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Abstract 

Modern sewage treatment processes do not remove many chemicals that pass through the sewer 

system, including pharmaceuticals and personal care products that have been shown to have 

negative effects in ecosystems. New processes have been developed to remove these chemicals, 

known as advanced oxidation processes (AOPs). In this study, Daphnia magna are used to 

examine the effects of wastewater effluent treated conventionally compared to effluent treated 

with AOPs (Peracetic Acid/Ultraviolet Light and Hydrogen Peroxide/Ultraviolet Light). For this 

purpose, two sets of experiments were preformed: a five-day survivorship trial, and a 14-day life 

history experiment. Growth, survival, and reproduction of Daphnia magna raised in the different 

effluents were examined. Furthermore, Daphnia metabolites were quantified using 

metabolomics. Results from survivorship trials show an increase in survival of animals exposed 

to effluent treated with concentrations of 6 mg of peracetic acid/UV. In the 14-day life history 

experiment it was found that the 3 mg peracetic acid/UV treatment had a negative effect on 

Daphnia’s body growth, lipid production, and reproduction as well as the intrinsic rate of 

population growth, or the potential for the population to exist overtime, more so than the 

conventional secondary effluent. In contrast, the effects of hydrogen peroxide/UV treatment 

showed the lowest toxic effects, comparable to the control animals. These experiments offer 

insights into how wastewater treated with AOPs and discharged into a natural body of water 

could affect zooplankton and sensitive early life stages of other aquatic organisms, which 

together represent the primary consumer level of aquatic food webs.  
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Introduction 

 

Sewage Effluent and Pharmaceutical and Personal Care Products (PPCPs) 

Wastewater treatment plants (WWTPs) are vital for the existence of cities and do an 

adequate job of recycling used water back into the environment. However, much of the 

technology and many of the techniques used in treating wastewater are dated and do not remove 

modern waste additions to sewage (Bilińska et al., 2016). As a result, treatment facilities do not 

remove some dangerous chemicals from the wastewater before it is released back into the 

environment, specifically, high levels of pharmaceutical and personal care products (PPCPs) 

(Blair et al., 2013).  

Pharmaceutical and personal care products include a variety of substances such as 

residual medicines that have either been poured down a drain or excreted (Arnnok et al., 2017). 

These chemicals are often stable, long lasting, and have a variety of negative effects on the 

environment. PPCPs tend to be lipophilic and are easily bioaccumulated within the food chain, 

often with physiological consequences. For instance, in Daphnia magna PPCPs have been 

known to alter sex ratios, decreasing the production of males when water conditions are poor, 

and decreasing overall vitality (Baer et al., 2009). High exposure to PPCP-laced sewage effluent 

tends to cause organ damage in exposed aquatic organisms, such as kidney structure alteration in 

the zebrafish (Danio rerio) (Galus et al., 2013), as well as an alteration of gene regulation and 

neurotransmitter activity in various fish and zooplankton (Arnnok et al., 2017, Yamamoto et al., 

2011). Recent examinations have found that the levels of antidepressants and other PPCPs in fish 

are substantially higher than previously thought, indicating a much more serious problem 
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(Arnnok et al., 2017, Blair et al., 2013) that requires additional cleansing of the final effluent at 

WWTPs.  

  

Advanced Oxidation Processes 

 Advanced oxidation processes (AOPs) are chemical treatments that are designed to break 

down and remove organic and inorganic materials, including many PPCPs, through oxidation 

with radicals, especially hydroxyl radicals. Hydroxyl radicals are neutral OH molecules that are 

highly reactive and short-lived. Their high energy and reactivity allow them to break apart 

chemicals in the sewage effluent, creating less toxic and more manageable byproducts for the 

most part (Gligorovski et al., 2015). While radicals can be useful, excess amounts can damage 

biotic systems in a variety of ways, including breaking down amino acids and damaging 

digestive capabilities (Tang et al., 2006). To prevent this situation, excess radicals are removed 

through the addition of thiosulfates before sewage effluent is released.  

There are a variety of AOP treatments that range in quality and convenience. A main 

benefit of AOPs compared to other advanced effluent treatments is that many can be installed at 

the end of the usual wastewater treatment process without having to overhaul the entire plant. A 

basic AOP that can be implemented with minimal change to the WWTP is ultraviolet light (UV) 

exposure at the current chlorine disinfection end stage (Qin et al., 2014, Zhang et al., 2015). 

Another simple but effective treatment involves mixing peracetic acid (PAA) into the effluent 

and exposing the mixture to UV light (Cai et al., 2017). Ultraviolet light is a common tool in 

many AOPs as it provides the energy needed to break chemical bonds. These two treatments are 

relatively inexpensive to implement but are not the most effective. Some of the better treatments 

dealing with removal of pharmaceuticals include bubbling ozone through the effluent 



3 
 

(ozonation) or adding hydrogen peroxide (H2O2) and exposing the mixture to UV light. 

Hydrogen peroxide has been shown to be one of the most effective AOPs in terms of removing 

PPCPs (Wols et al., 2013). In addition, all AOPs are designed to break down and leave no 

obvious negative residuals in the released sewage effluent that could harm aquatic organisms 

(Qin et al., 2014).  

Although effective, the main problem preventing the implementation of  AOP methods 

relates to the cost of running these processes (UV light and chemical addition) and the changes it 

would require to a treatment facility (Bilińska et al., 2016). Another problem is that while much 

research has been done on the general chemical changes these AOPs cause, little work has been 

done on the environmental impacts of AOP-treated effluent. The absence of studies clarifying the 

environmental impact of the treatment itself is likely another factor contributing to delays. 

 

Daphnia magna as Model Organism to Test Advanced Oxidation Processes (AOPs) 

 Many studies of the environmental impact of treated effluent in general have been done 

using species such as Daphnia magna. The zooplankter D. magna is a large species of freshwater 

water fleas (Crustacea) with adults measuring between 1.5-5 mm, making them easy to observe 

and monitor. In addition, they tend to reproduce asexually, allowing for replication with 

genetically identical individuals. These features, as well as their low trophic level, easy culturing, 

and general sensitivity to changes in the environment, make Daphnia magna an ideal test 

organism (Baer et al., 2009). The ecological relevance of using Daphnia in experimental work 

resides in their importance as primary consumers in the aquatic food web and their role as 

conduits of basal energy (from algae) to upper trophic levels (i.e., various species of fishes, 

fishing birds, etc.). Any deterioration at the zooplankton level carries the impact through the food 
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web, causing declines and shifts in all the interconnected species, including those valued by 

humans such as sport fish. To further understand the effects of PPCPs in Daphnia, in this study I 

briefly introduce the production of distinct groups of metabolites by the animals exposed to the 

different experimental treatments (Taylor et al., 2018).  

     

Objective 

 

The purpose of this project was to evaluate Daphnia magna’s survivorship, condition, 

and changes in life history events when reared in effluents that have been AOP-treated. Further, I 

intended to gain an understanding of the level of molecular markers produced by the animals 

when exposed to the various treatments by using metabolomic analysis. Metabolomic analysis 

involves examining the levels of different metabolites in the body in order to identify changes in 

body processes that would produce the metabolites. This metabolomics research is part of a 

collaborative study with the University at Buffalo, and only preliminary results are available at 

the time of writing this thesis. However, I have included a snapshot of those results to show how 

the different treatments produced different sets of molecules in the Daphnia in each of the 

treatments. 
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Hypotheses  

 

1. Because hydrogen peroxide is very effective at removing PPCPs and breaks down easily 

(Wols et al., 2013), Daphnia exposed to effluent treated with H2O2 will not produce 

many distinct metabolites compared to a control of Daphnia maintained in clean water 

that has not been exposed to any kind of effluent. 

2. Because peracetic acid (PAA) and ultraviolet light are less effective at removing PPCPs 

than H2O2 (Cai et al., 2017), Daphnia exposed to effluent treated this way will express a 

similar number of unique metabolites, but to a lesser degree, as Daphnia that have been 

directly exposed to the WWTP secondary effluent, which is the effluent before 

chlorination and release into the environment. 

3. Daphnia will show effects of exposure to the various effluents compared to the control as 

reflected in changes in development and life history events in all AOP and secondary 

effluent treatments. These effects will include whether they reproduce successfully, 

whether the timing and number of molts is altered, and their nutritional status as 

measured by lipid content. Survivorship and reproduction will be greater in the H2O2 

treatment than in the peracetic acid treatments. 
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Methods 

 

 

Effluent Collection and Treatment 

 The effluent for this study was collected by students from the University at Buffalo (Wei 

Lab). Effluent was collected from a Western New York wastewater treatment plant in the 

Southtowns and treated with the various AOPs used in this study.  At the treatment plant, a 

bucket (roughly 5 L in size) was used to collect sample effluent from the secondary clarifier. For 

each experimental treatment, the effluent was chemically treated as indicated below and ran 

through a loop under UV lights. The effluent ran through this loop until appropriate amounts of 

energy were added to each treatment. This process ensured proper mixing of chemicals and an 

even distribution of energy. A thiosulfate solution (6 g/L Na2S2O3) was added to the AOP-treated 

effluent (amount differed between treatments, Table 1) in the amounts necessary in order to 

quench residual hydroxyl radicals. To evaluate the PPCPs’ concentrations in the experimental 

treatments’ water, samples were analyzed using a mass spectrometer to determine the decrease in 

PPCPs using AOPs (Figure 1). The AOP-treated effluents were then filtered using a 0.7 µm glass 

fiber filter (pre-combusted) and frozen at -80oC until use in the Daphnia experiments. 

The AOP treatments for the following experiments were: 3 mg/L peracetic acid with exposure to 

UV light at 3000 mJ/cm2A; 6 mg/L peracetic acid with exposure to UV light at 3000 mJ/cm2; 

and 6 mg/L hydrogen peroxide with exposure to UV light at 3000 mJ/cm2. The fourth treatment 

was the secondary effluent without any additions, and I used two controls: filtered tap water 

control and a control with filtered tap water and the addition of 1 mL/L thiosulfate (for the 

survivorship experiment only) (Table 1).  
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Daphnia’s Toxicity Tests 

To examine the effects of AOP-treated effluent on aquatic life, I used Daphnia magna in 

a series of toxicity tests. The Daphnia used for these tests were raised in an incubator in filtered 

Buffalo city tap water (source: Lake Erie, filter: redox KDF/carbon). These Daphnia were fed a 

diet of fresh Ankistrodesmus sp. (alga cultured in the laboratory) and kept at 20°C with a 

photoperiod of 16:8h L:D. A clonal population of Daphnia was created by separating one 

individual and allowing it and its progeny to reproduce asexually until a sustainable population 

was achieved. The Daphnia used for the experiments were born from the second clutch of eggs. 

Neonates released by the mother in a window period of 6 h were isolated for the experiment to 

ensure that all animals used in the experiments had similar age and size. From this pool, 50 

individuals were randomly selected and measured to ensure similar lengths for each trial and 

were expected to have initial similar metabolite composition (Đức et al. 2016).  

 

Toxicity tests were run using the following six treatments (experimental effluents) and will be 

referred to as follows (abbreviations in parenthesis): 

• 3 mg/L peracetic acid with exposure to UV light at 3000 mJ/cm2. (3 mg/L PAA). 

• 6 mg/L peracetic acid with exposure to UV light at 3000 mJ/cm2. (6 mg/L PAA). 

• 6 mg/L hydrogen peroxide with exposure to UV light at 3000 mJ/cm2. (H2O2) 

• Secondary effluent (non-AOP treated effluent). (Secondary effluent). 

• Control of filtered tap water. (Control). 

• Control of filtered tap water with thiosulfate. (Control+thiosulfate). 
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Analysis of PPCPs in Treatment Effluents 

The analysis of PPCPs in the effluents used for this study was performed at the 

University at Buffalo (Ph. D. student Laura Brunelle, Chemistry Dept., Aga Lab). Briefly, a 

sample of 500 ml from each experimental effluent was filtered and the pH brought to 2 ± 0.5. 

Surrogate standards to the PPCPs of interest were spiked into the sample (100 ppb) and 500 ml 

of spiked sample was run through a conditioned Hydrophilic-Lipophilic-Balanced Solid Phase 

Extraction cartridge. The cartridge was dried and later eluted twice with 4 ml portions of 

Acetonitrile, dried under Nitrogen, resuspended and analyzed using an LC/MS/MS instrument. 

Two experiments were performed for this study separately in an incubator at a constant 

temperature of 20oC and 16:8 h L:D photoperiod. The vials were placed randomly in the 

incubator and moved daily to ensure no bias related to location in the incubator. 

 

Survival Rates Experiment  

In order to determine which of the experimental effluents had an effect on Daphnia’s 

metabolism and survival, I performed tests of survivorship. These tests consisted of exposing 

Daphnia to different concentrations of effluent and monitoring survivorship. Each test lasted five 

days. Five replicates of 16 individuals each were used for each treatment and the controls. These 

individuals were placed in 150 mL of treatment solution. The effluent was diluted with filtered 

tap water to attain the desired concentrations. The test concentrations for each experimental 

effluent were: 6.25%, 12.5%, 25%, 50% and 100% (Villegas-Navarro et al., 1997, Ra et al., 

2007). For the survivorship tests, each of the treatments was tested in separate runs (i.e., one 

experimental effluent at a time) with controls. This procedure allowed for each treatment to be 

run in sets of 30 vials (five replicates  six treatments, including the controls). A thiosulfate 
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control was run for this experiment, as indicated above, to examine if the thiosulfates used to 

quench excessive hydroxyl radicals had any effect on Daphnia mortality. This control had the 

highest thiosulfate concentration used in the AOP-treated effluents (Table 1). The surviving 

Daphnia were frozen at -80oC for metabolomic analyses. 

 

Table 1:  Concentrations of thiosulfates present in the different AOP treatments. 

Treatment 

 

Na2S2O3 Quenching after UV (mL/liter 

of effluent) 

  

 

pH 

  

6 mg/L PAA + 3000 mJ/cm2 

UV 
1 7.13 

6 mg/L H2O2 + 3000 mJ/cm2 

UV 
0.47 7.65 

3 mg/L PAA + 3000 mJ/cm2 

UV 
0.5 7.26 

Control N/A 7.12 

Control+Thiosulfate 1 7.46 

Secondary Effluent N/A 7.49 

 

 

 

Daphnia’s Extraction Procedure for Metabolomics 

 A preliminary exploration of the differences in metabolic composition between the 

Daphnia that died during the survivorship trials and those who survived revealed there were no 

significant differences; therefore, all the Daphnia from each treatment were pooled together. The 

Daphnia were freeze-dried, weighted, and placed in a Dounce homogenizer with 3 ml 

methanol:water (80:20) and homogenized for 30 strokes. The resulting solution was centrifuged 

at 500 RCF for ten minutes at 4oC. From the supernatant, 2.7 ml were removed and dried under 
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nitrogen. The samples were resuspended in methanol:water (80:20) with 25 ppb D10-

carbamazepine and filtered. Samples were then run through TSQ Quantum Ultra Orbitrap 

(Thermo Fisher, Waltham, MA) and Compound Discoverer 3.0 (Thermo Fisher, Waltham, 

MA) for untargeted analysis of metabolites. 

 

Daphnia’s Life History Experiment  

In order to study the effects of AOP-treated effluent on the life history of Daphnia, a 

longer exposure test was performed. For each treatment, ten replicates of 20-mL vials were filled 

with the experimental treatments (undiluted) and in each vial was placed only one Daphnia 

neonate (<10 h. old). As the thiosulfate control showed no significant difference from the tap 

water control in the survivorship trial results, it was not used for this experiment (Figure 2, p 

≥0.05). All treatments were run concurrently for 14 days, close to the life span of the Daphnia. 

Daphnia were examined daily on the same schedule and moved to new vials with fresh media 

and food (Ankistrodesmus sp. 5.6 x 105 cells/ml per animal/day). The visual examinations of the 

Daphnia included: survivorship, presence of molts, presence and number of eggs and neonates 

born. Neonates and dead Daphnia were removed from the vials and frozen at -80oC. At the end 

of the experiment, each surviving Daphnia was measured (top of head to base of spine) and 

lipids and ovaries were assessed using a scoring system between 0 and 3, using defined pictorial 

scales (Tessier and Goulden 1982). A lower score on these scales indicated an individual was 

low in lipid stores and had poor reproduction, while a high score represented an individual with 

lipid reserves that was reproducing well. After these assessments at the end of 14 days, all 

Daphnia were frozen and stored at -80oC. 
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Statistical Analysis 

For the survivorship trials, all data was tested for normality (Kolmogorov-Smirnov) and 

analyzed using ANOVA. Survivorship, measured as the number of days individuals were alive 

during treatment period, was compared between treatment concentrations and the controls. 

For the life history experiment, the intrinsic rate of population increase, r, was calculated 

using a computer program developed by Dr. Javier Peñalosa (SUNY Buffalo State) that uses 

Jackknife as a measure of accuracy to sample the distribution of r. The equation used was: 

∑ e –rx lx mx = 1   

where lx is the proportion of individuals surviving at time x, and mx is the mean number of eggs 

produced per surviving individual at time x.  For r, positive values indicate growth in a 

population and negative values indicate that there are more individuals dying than being born in 

that population.  

To analyze life history parameters measured in this study (reproduction, survivorship, 

molting, etc.), parametric and non-parametric statistics were used to compare Daphnia’s 

responses to the treatments. All data was tested for normality using Kolmogorov- Smirnov tests. 

When the data were not normal, they were transformed using (ln+1). If transformations did not 

improve normality, non-parametric statistics were used (Kruskal-Wallis test). The variables that 

were analyzed with ANOVA included total number of molts, body length, total number of 

neonates and total number of eggs. The variables analyzed using non-parametric tests included 

the intrinsic rate of population increase, r, and the lipid and ovary indices. For all data sets, post-

hoc tests of pairwise multiple comparisons were performed using the Bonferroni correction at 

p<0.01 (for five comparisons) for significance. 
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Results 

 

Pharmaceuticals and Personal Care Products (PPCPs) removal 

 Water samples were taken from the experimental effluents for each treatment and 

examined with a mass spectrometer to quantify PPCPs. The decrease in pharmaceuticals in the 

AOP treatments can be seen in Figure 1. The most prevalent PPCP in the effluent, Iopamidol, 

was also the most reduced by the treatments. Iopamidol is a contrast agent used for computerized 

tomography (CT) scans and other radiologic examinations. Figure 1 highlights the different 

abilities of the AOPs to decrease PPCPs. The control tap water was found to contain trace 

amounts of caffeine. 

 

 

Figure 1: Mass spectrometer analysis of treatments for PPCP presence. Concentration (ng/L) of 18 

targeted PPCPs. The Field Station Control reflects Buffalo’s tap water. The abbreviations are A-ERY: 

Anhydro-Erythromycin, SMX: Sulfamethoxazole, CIT: Citalopram, BUP: Bupropion, IOP: Iopamidol, 

CAF: Caffeine, SER: Sertraline, AMP: Amitriptyline, CLA: Clarithromycin, DIC: Diclofenac, CBZ: 

Carbamazepine, D-VEN: Desvenlafaxine, CIP: Ciprofloxacin, TMP: Trimethoprim, AZI: Azithromycin, 

LMT: Lamotrigine, PMD: Primidone, VEN: Venlafaxine. The PPCPs categories and values are listed in 

Appendix A, Table 1.   
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Survivorship Experiment Survival Rates and Metabolomics Analysis  

 The survivorship of the Daphnia in the survivorship trials was measured as the number of 

days they were alive during the study period. Survival was significantly increased in the 6 mg/L 

PAA treatments, with Daphnia raised in 100% and 50% concentrations having higher survival 

rates (ANOVA, p= 0.00003, Figure 2, Table 3). No other treatment had significant differences in 

survival from the controls. In addition, in all cases there was no difference in survival between 

the filtered water control and the control + thiosulfate (Bonferroni, p ≥ 0.05, Table 2).  
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Figure 2: Percent survival of Daphnia in the Survivorship Experiment. Legend indicates percent 

concentration of each treatment, and the two controls filtered tap water (Control W) and filtered tap water 

plus thiosulfate (Control Thio). Asterisk indicates significant difference from Control (tap water).  
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Table 2: Total number of deaths at the end of 5 days for each concentration of each treatment for the 

survivorship experiment (mean ± SE).  N=16. Each treatment was run separately and had its own 

controls. Asterisk denotes significance. 

 

Treatment 100% 50% 25% 12.5% 6.25% Control Control+ 

Thiosulfates 

6 mg/L PAA 0.8±.4* 1.6±.79* 4.0±.5 6.0±.7 4.4±1.0 4.0±.4 4.4±.4 

3mg/L PAA 2.0±.3 1.6±.5 2.6±.7 1.2±.6 3.0±.5 2.0±.4 2.4±.7 

H2O2 2.4±.2 2.8±.9 2.8±.7 4.2±1.1 3.4±.9 3.6±.4 2.8±.8 

Secondary 

Effluent 

2.0±.5 2.6±.5 3.0±.5 1.8±.5 1.8±.6 2.6±.7 NA 

 

 

Table 3: One-way ANOVA for the average number of deaths of experimental Daphnia in the 

survivorship experiment. Factor: Water treatment 

 

  

Survivorship Experiment ANOVA 

 

Sum of 

Squares df 

Mean 

Square F Sig. 

6 mg/L PAA  Between 

Groups 96 6 16 8.235 3.45E-05 

Within Groups 54.4 28 1.943   

Total 150.4 34    

3 mg/L PAA  Between 

Groups 11.143 6 1.857 1.171 0.350 

Within Groups 44.4 28 1.586   

Total 55.543 34    

H2O2 Between 

Groups 11.486 6 1.914 0.632 0.703 

Within Groups 84.8 28 3.029   

Total 96.286 34    

Secondary 

Effluent 

Between 

Groups 6.3 5 1.26 0.796 0.563 

Within Groups 38 24 1.583   

Total 44.3 29    
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The metabolomics results (Figure 3) reflect the comparison of each experimental effluent  

against the filtered tap water control. The number of different metabolites between the control 

and a treatment are shown as those that are not shared in the “rose” graph. The 

control+thiosulfate treatment produced 56 unique metabolites, the secondary effluent treatment 

had 43 unique metabolites, the H2O2 treatment produced 32 unique metabolites and the PAA 

treatments produced 34 unique metabolites (3 mg/L treatment) and 38 unique metabolites (6 

mg/L treatment) but they also shared 9 metabolites. The control+thiosulfate treatment produced 

the largest number of unique metabolites, followed by the secondary effluent. The three AOP 

treatments produced similar numbers of unique metabolites. Because the metabolite detection 

was untargeted, the identity of these metabolites is currently unknown. Further research beyond 

the scope of this thesis will determine the molecules involved. 

 

 

Figure 3:  Rose graphic of the metabolomics of Daphnia magna from the survivorship experiment. 

Treatments are compared to the filtered tap water control. Number of shared metabolites appear in the 

center and unique metabolites for each treatment appear in the edges of the petals.  
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Daphnia Life History Experiment  

 Through the course of the 14-day life history experiment, one Daphnia died in each 

treatment including the control. As mentioned earlier, because there were no significant 

differences in Daphnia mortality rates between the tap water control and the tap water + 

thiosulfate control in the survivorship experiment, only the tap water control was used in this 

experiment. All other treatments remained the same.  

 

Table 4: Statistical results for life history experiment. A is one-way ANOVA for the average length as 

well as molts, eggs and neonates produced by experimental Daphnia. B is Kruskal-Wallis test for the 

lipid and ovary indices as well as intrinsic rate of population increase, r, for experimental Daphnia. 

Factor: Water Treatment. 

 

A. Life History ANOVA 

 

Sum of 

Squares df Mean Square F Sig. 

Length (mm) Between Groups 5.896 4 1.474 2.999 .030 

Within Groups 19.656 40 .491   

Total 25.551 44    

# Total Molts Between Groups 9.911 4 2.478 1.533 .211 

Within Groups 64.667 40 1.617   

Total 74.578 44    

# Total Eggs Between Groups 346.311 4 86.578 1.142 .351 

Within Groups 3032.000 40 75.800   

Total 3378.311 44    

# Total 

Neonates 

Between Groups 60.089 4 15.022 2.578 .044 

Within Groups 233.111 40 5.828   

Total 293.200 44    

B. Life History Kruskal-Wallis 

 Ovary  Lipid r 

Kruskal-Wallis 

H 

8.204 9.731 14.255 

df 4 4 4 

Asymp. Sig. .084 .045 .007 
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Body Length 

The final body length of the Daphnia measured at the end of the 14-day life history 

experiment was significantly affected by the AOP treatment (ANOVA, p=0.03, Figure 4, Table 

4). Daphnia raised in effluent treated with 3 mg/L PAA were significantly smaller than those 

raised in the control (Bonferroni method, p=0.023, Figure 4). No other treatment significantly 

affected body length (Figure 4), however, Daphnia in the control had the largest animal sizes, 

followed by the secondary effluent and the hydrogen peroxide treatment. Both PAA treatments 

had, on average, smaller animals at the end of the experiment. 

 

 

 

 

 

   

 

 

 

 
Figure 4: Body length of Daphnia at end of the life history experiment (Mean ± SE). Different letters 

above columns indicate significant differences. Control is filtered tap water, secondary effluent is non-

AOP treated, PAA 3 is the 3 mg/L PAA treatment, PAA 6 is the 6 mg/L PAA treatment, H2O2 is the 6 

mg/L H2O2 treatment.  
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Molting  

 The number of molts produced by Daphnia as they grew throughout the 14-day 

experiment did not differ statistically in any of the treatments (ANOVA, p > 0.05, Figure 5, 

Table 4) but, on average, the three AOP treatments seemed to induce an increase in molting 

events. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5: Total number of molts produced by Daphnia during the 14-day life history experiment (Mean ± 

SE). Same letter above columns indicates lack of statistical differences. Abbreviations as in Figure 4. 

 

 

 

 

 

Number of Eggs in the Carapace 

 

 The number of eggs produced by Daphnia during the 14-day experiment did not differ 

significantly in any of the treatments (ANOVA, p > 0.05, Figure 6, Table 4), however, the 3 

mg/L PAA  treatment produced on average the lowest number of eggs, followed by secondary 

effluent, 6 mg/L PAA, H2O2 and the control. 
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Figure 6: Total number of eggs produced by Daphnia during the 14-day life history experiment (Mean ± 

SE). Same letter above columns indicates lack of statistical differences. Abbreviations as in Figure 4. 

 

 

Number of Neonates Produced 

 The number of neonates produced by Daphnia in the 14-day life history experiment was 

significantly different between treatments (ANOVA, p=0.04, Figure 7, Table 4). Daphnia raised 

in the secondary effluent had significantly fewer neonates (none produced in the secondary 

effluent) compared to those raised in the control (Bonferroni, p=0.021, Figure 7), or those raised 

in the H2O2 treatment (Bonferroni, p=0.022, Figure 7). In addition, those raised in the 6 mg/L 

PAA treatment produced significantly fewer neonates then the control (Bonferroni method, 

p=0.008, Figure 7).  
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Figure 7: Total number of neonates counted during the 14-day individual exposure experiment (Mean ± 

SE). Different letters above columns indicate significant differences. Abbreviations as in Figure 4. 

 

 

 

Lipid and Ovary Indices 

 The lipid and ovary indices were measured on individuals that survived to the end of the 

experiment. The ovary index did not differ significantly between the treatments (Kruskal-Wallis, 

p > 0.05, Figure 8A, Table 4). The lipid index, on the other hand, did differ significantly 

(Kruskal-Wallis, p = 0.045, Figure 8B, Table 4). Daphnia raised in the 3 mg/L PAA treatment 

had significantly less observable lipid droplets compared to the control (Bonferroni, p = 0.049, 

Figure 8). 
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Figure 8: Ovary (A) and lipid (B) average indices’ rank of individual Daphnia that survived the different 

treatments (Mean ± SE). Different letters above columns indicate significant differences. Abbreviations as 

in Figure 4. 

 

Intrinsic Rate of Population Increase (r) 

The intrinsic rate of population increase, r, was calculated using data on survivorship and 

number of eggs produced by the experimental Daphnia (for r based on average neonates, see 

Appendix B, Figure 1). This r did change significantly between the treatments (Kruskal-Wallis, p 

= 0.007, Figure 9, Table 4). Daphnia raised in the 3 mg/L PAA treatment had a significantly 

lower intrinsic rate of population increase compared to those raised in the control (Bonferroni, p  

= 0.01, Figure 9) as well as those raised in the H2O2 treatment (Bonferroni, p  = 0.045, Figure 9).  
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Figure 9: Intrinsic rate of population increase (r) calculated for each treatment (Mean ± SE) using 

number of eggs in the carapace. Abbreviations as in Figure 4.  

 

 

Table 5: Summary of results from the life history experiment (Mean ± SE). Asterisk represents values 

that differed significantly from the control.  

 

 Control Secondary 

Effluent 

3 mg/L PAA 6 mg/L PAA H2O2 

Length 

(mm) 

3.14±0.21 2.54±0.26 2.07±0.21 * 2.31±0.19 2.66±0.28 

# Molts 1.444±0.34 1.111±0.35 2.333±0.41 2±0.58 2.222±0.40 

# Eggs 10.667±3.21 6±3.04 3.111±2.05 4.556±2.78 8.889±3.26 

# Neonates 3.222±1.47 0±0 * 0.778±0.778 0.333±0.33* 1.667±0.60 

Ovary Index 1.556±0.18 1.333±0.24 1.111±0.11 2±0.24 1.556±0.34 

Lipid Index 2.222±0.22 1.889±0.31 1±0.29 * 1.444±0.24 1.778±0.32 

r 0.25±0.05 0.15±0.04 0.11±0.07 * 0.15±0.08 0.20±0.03 
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Discussion 

Daphnia are often used as a test organism to examine water quality. This is due to the 

fact that many physiological processes in Daphnia, such as reproduction and allocation of 

resources (lipids), are sensitive to nutrient amounts and presence of toxins. My experiments were 

designed to use this sensitivity to examine the effects of different AOP treatments of wastewater 

effluent on these organisms. 

 

Survivorship and Metabolomics 

  The results of the survivorship experiments show that none of the treatments caused an 

increase in mortality during the five days of the test, or even during the 14-day life history 

experiment. The (non-AOP treated) secondary effluent served as a baseline to compare if the 

AOP treatments improved the quality of the effluent for Daphnia and similar zooplankton. One 

would expect the secondary effluent to have the most negative impact given the highest presence 

of PPCPs and other dissolved pollutants. However, results from the life history experiment 

indicated that the treatment of 3 mg/L PAA negatively impacted the quality of the effluent for 

Daphnia, followed by the 6 mg/L PAA, which had impacts as negative as those of  the secondary 

effluent. The other AOP treatment, H2O2, showed no detrimental effects in the life history 

responses of Daphnia.  

The number of unique metabolites (compared to the filtered tap water control) expressed 

by Daphnia exposed to the various treatments, indicates that they expressed a lower number of 

them in the AOP treatments than in the secondary effluent. Thus, the reduction of some of the 

PPCPs through the AOP processes resulted in Daphnia producing less unique metabolites, which 
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could be interpreted as a positive effect of the AOP treatments (except for the impact of the 

AOPs on Daphnia’s population growth).  Interestingly, the Daphnia in the control + thiosulfate 

produced the highest number of unique metabolites, even higher than in the secondary effluent, 

which had high levels of PPCPs. The explanation for this result may be in the fact that the 

thiosulfate in the filtered control water did not react with organic and chemical compounds as it 

did in the other treatments, thus more of the chemical activity was present. Although changes in 

pH have been reported by the addition of thiosulfates to water, in this study the pH in all the 

treatments and the control were neutral (Table 1) (Basu et al., 2011). 

 

Growth 

 Molting is an essential process for growth in Daphnia. The shedding and regrowth of the 

carapace is an energy intensive process that allows for body growth and repair. In this 

experiment, Daphnia in the AOP treatments tended to have more frequent molting than those in 

the control or the secondary effluent. This strategy, which Daphnia exhibits when under stress 

(Pérez-Fuentetaja et al., 2016), impacts the energy supplies of the animals and, ultimately, their 

ability to reproduce. Therefore, the AOP treatments had a tendency to induce increased molting 

and the extra energy spent in somatic maintenance, such as building the carapace, could have 

taxed their ability to contribute to population growth. 

The adult Daphnia at the conclusion of the experiment was significantly smaller in the 3 

mg/L PAA treatment (mean = 2.07 mm) than in the control (mean = 3.14 mm). Previous research 

has shown that the larger the Daphnia is, the higher the cost of molting (Hessen and Rukke,, 

2000). Therefore, the molts produced by the smaller Daphnia in the 3 mg/L PAA took less 
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energy compared to the larger Daphnia in the controls. One explanation could be that Daphnia 

raised in the 3 mg/L PAA treatment were either impaired for energy uptake or had to redirect 

energy that would be used for growth and ovary development to more survival-based processes, 

such as detoxification and somatic maintenance. Studies have shown that the higher the initial 

concentration of peracetic acid, the more effective it is at breaking down PPCPs and the less 

residual peracetic acid is present in the resulting effluent (Rizzo et al., 2018). A second 

explanation could be that higher levels of residual peracetic acid in the 3 mg/L PAA treatment 

could have impaired Daphnia’s growth and cause more stress in these animals compared to those 

in the other treatments. Yet, another explanation could involve the level of OH radicals present. 

OH radicals are generated through the AOP treatment process and are responsible for the 

breakdown of PPCPs. Effluents containing OH radicals can potentially enhance sublethal 

toxicity by disturbing Daphnia’s natural antioxidant protection (Oropesa et al., 2017). AOP 

treatments tend to use thiosulfates to remove any excess hydroxyl radicals before the release of 

the effluent (Basu et al., 2011, Luukkonenm et al., 2014). However, if residual peracetic acid was 

present, it is possible for the residue to create unquenched OH radicals that could have damaged 

Daphnia. Daphnia from both the 3 and 6 mg/L PAA treatments tended to be smaller than those 

in the secondary effluent or the H2O2 treatment, which indicate that some aspect of the peracetic 

acid treatments was interfering with growth.  

 The overall negative effect of the 3 mg/L PAA treatment can be further seen in the results 

from the lipid index. The lipid index ranks how many resources an individual has stored within 

the body. There were significantly fewer observable lipids in the Daphnia raised in the 3 mg/L 

PAA treatment compared to the control Daphnia, despite food quality and quantity being equal 

among treatments. Additionally, the amount of lipids in the 3 mg/L PAA was also lower than in 
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the Daphnia raised in the 6 mg/L PAA treatment, though not significantly. Lipids are the most 

susceptible molecules to be damaged by oxygen radicals, which cause deterioration of the lipid 

and damage to systems, so the low levels of lipids could be due to exposure to unquenched 

oxygen reactive molecules (Oropesa et al., 2017). Whichever the molecular cause, Daphnia in 

the 3 mg/L PAA treatment was not able to accumulate enough energy as lipid droplets, which 

affected their growth (Riessen et al., 2012).  

   

Reproduction 

 Although Daphnia suffered reproductive disadvantages across the AOP treatments 

compared to the control, those raised in the secondary effluent did not produce any neonates. The 

presence of eggs but no neonates in the secondary effluent treatment could be explained as a 

response to metabolic stress due to the presence of high levels of PPCPs (Figure 1) and other 

contaminants in the water. Although these stressed animals started to produce eggs, these eggs 

might not have been supplied with sufficient resources for their full development into neonates, 

or the eggs may have been killed in the brood chamber (Baird et al., 1991). Alternatively, they 

might have been reabsorbed by the parent to conserve resources and energy (Ebert, 1992) as the 

environment was inauspicious. This pattern was also seen in the 3 and 6 mg/L PAA treatments, 

but in these two treatments rates of 0.7 and 0.3 neonates (respectively) were produced. 

Therefore, the interplay of lower dissolved PPCPs and chemical interference from the peracetic 

acid resulted in decreased neonate production, but above non-AOP treated secondary effluent. 

Daphnia in the 6 mg/L PAA treatment tended to perform better than those in the 3 mg/L 

PAA treatment in all categories except for neonate production. This would indicate that any 
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negative byproduct from the 3 mg/L PAA treatment could still be present in the 6 mg/L PAA 

treatment, but at much lower levels. In contrast, Daphnia in the control and in the H2O2 

treatments were the only ones who showed little to no egg reabsorption or loss. In fact, the levels 

of eggs and neonates in the H2O2 treatment were the closest to the control (1.6 and 3.2 neonates, 

respectively), indicating that that the H2O2 treatment was the least stressful for Daphnia. 

Various other strategies are available to Daphnia to overcome stressful situations. 

Daphnia from the 3 mg/L PAA treatment showed signs of stress, such as small size, high 

molting rates, and the lowest lipid and ovary indices but, despite their disadvantageous condition, 

they still focused their efforts on reproduction. In order to gain a minimum body size to support 

reproduction, these Daphnia may have allocated more energy to attain the necessary growth and 

used their energy reserves to support reproduction (Pérez-Fuentetaja et al., 2016). The strain of 

producing eggs at a small body size can also explain the lower amount of lipids present in the 3 

mg/L PAA Daphnia. The ovary index was not substantially different among treatments, 

indicating that despite the stresses of their environments, reproduction was a clear priority for 

energy allocation.  

 The development of eggs and neonates can further be analyzed by considering how much 

each individual Daphnia was contributing to the growth of the overall population. This can be 

done through the examination of life tables and the value of r, the intrinsic rate of population 

growth. In this experiment, the AOP treatments did cause a significant change in r, both when 

calculated using the number of eggs present in the carapace and when using the number of born 

neonates (see Appendix B for those results). For the calculation using the number of eggs, the 3 

mg/L PAA treatment produced Daphnia that had a significantly lower r (r = 0.11) compared to 

the Daphnia in the control (r = 0.25) and in the H2O2 (r = 0.20) treatment, and was non-
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significantly lower than the secondary effluent (r = 0.15).  This last piece of information 

indicates that if effluent is treated with 3 mg/L PAA and discharged into a natural body of water, 

it could have population-wide impacts by lowering the ability of aquatic crustaceans at the lower 

rungs of the food web to reproduce, potentially reducing their ability to rebound from population 

crashes and heavy predation. While the population would still be able to slowly increase, the 

individuals would be smaller and in worse condition. This outcome was also seen in other 

treatments to some extent, as the secondary effluent, 6 mg/L PAA and H2O2 treatments all had r 

values lower than the control, though not significantly (see also results using born neonates, as 

many eggs did not produce neonates, Appendix B).  

Therefore, a 3 mg/L peracetic acid/UV treatment of wastewater-processed secondary 

effluent is not suitable for crustacean populations as it causes chronic toxicity in Daphnia magna 

and it impacts their reproduction negatively. 

 

Conclusion 

 

 While the effects of PPCPs in sewage effluent can have a variety of negative effects 

including reduced reproduction, it is important to make sure that the fix is not worse than the 

problem. The growth and reproduction of Daphnia can be affected by many different factors and 

a tradeoff between growth and reproduction exists under natural stressful conditions (Tessier et 

al., 2000). In wastewater secondary effluent treated with 3 mg/L PAA, Daphnia had a lower 

reproductive output and a low intrinsic rate of population growth (r) compared to the control, 

which would result in reduced increases in population size. Were further stresses to be applied to 
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these Daphnia, such as low food or nutrients, the offspring may not have the reserves necessary 

to survive. This could have disastrous effects on the local food web as Daphnia make up the 

basal level of many freshwater ecosystems.   

 The reduced body size and lipid content of Daphnia under stressful conditions could have 

further consequences when considering whole ecosystems. The small size would be vulnerable 

to higher rates of predation from copepods, while the low lipid content would decrease their 

quality as food for larval and planktivorous fish (Voronov et al., 2008). As Daphnia species 

make up the lower links in the aquatic food web, a change in quality and size of these 

cladocerans could have reverberating effects across the whole food web. In addition, the low 

population growth rate could lead to Daphnia becoming extirpated from certain areas, shifting 

the base of the food web to copepods (Voronov et al., 2008), with the possibility of completely 

restructuring species composition in that area. 

 Daphnia raised in the H2O2 treatment, on the other hand, exhibited life history responses 

that were most similar to the control. These results indicate that H2O2, while already known to be 

one of the best AOP treatments in terms of eliminating PPCPs (Wols et al., 2013), may also have 

the least negative impacts on aquatic life.  
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Appendix A 

  

Table 1. Full name of PPCPs listed in Figure 1 as well as Concentration in ng/L (parts per 

trillion) in the different treatments.   

 Name Function 3 mg/L 
PAA-UV 
 

6 mg/L 
PAA-UV 
 

6 mg/L 
H2O2-
UV 
 

Field 
Station 
(Control) 
 

Secondary 
Effluent 
 

VEN Venlafaxine Antidepressant 119.40 104.86 105.22 0 164.31 

PMD Primidone Anticonvulsant 52.20 50.08 51.78 0 70.30 

LMT Lamotrigine Anticonvulsant 234.19 284.12 260.41 0 288.04 

AZI Azithromycin Antibiotic 131.21 57.43 78.52 0 129.21 

TMP Trimethoprim Antibiotic 169.19 149.85 150.25 0 209.34 

CIP Ciprofloxacin Antibiotic 10.30 9.07 12.66 0 56.36 

DES Desvenlafaxine Antidepressant 757.36 696.45 632.99 0 944.33 

CBZ Carbamazepine Anticonvulsant 60.76 50.96 48.60 0 76.26 

DIC Diclofenac 
Anti-
inflammatory 0.00 0.00 0.00 0 5.72 

CLA Clarithromycin Antibiotic 7.21 2.69 4.52 0 7.56 

AMI Amitriptyline Antidepressant 15.46 8.82 10.18 0 22.53 

SER Sertraline Antidepressant 23.74 10.96 13.07 0 27.63 

CAF Caffeine Stimulant 35.83 24.41 30.80 40.81 22.09 

IOP Iopamidol Contrast agent 273.09 345.93 320.86 0 3264.02 

BUP Bupropion Antidepressant 111.04 76.44 83.86 0 160.63 

CIT Citalopram Antidepressant 117.03 101.56 99.93 0 167.43 

SMX Sulfamethoxazole Antibiotic 106.90 109.56 193.83 0 836.42 

A-ERY 
Anhydro-
Erythromycin 

Reagent 
0.00 0.00 4.63 0 6.18 
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Appendix B  

 

Intrinsic rate of population growth, r, calculated using neonates instead of eggs. 

This r did change significantly between the treatments (Kruskal-Wallis, p = 0.00, Figure 1). 

Daphnia raised in the 3 mg/L PAA treatment had a significantly lower intrinsic rate of 

population increase compared to those raised in the control (Bonferroni, p = 0.015, Figure 1). 

Daphnia in the 6 mg/L PAA treatment had a significantly smaller r than those raised in the 

control (Bonferroni, p = 0.000, Figure 1) as well as those raised in the H2O2 treatment 

(Bonferroni, p = 0.000, Figure 1). The neonate production was more variable between 

individuals, resulting in large error bars. These results indicate that the 3 mg/L PAA and 6 mg/L 

PAA treatment populations would crash without outside pressure, given time.  

 

 

 

 

 

 

 

 

 

 

Figure 1: Intrinsic Rate of Population Increase (r) calculated using number of neonates produced for each 

treatment (Mean ± SE). Abbreviations as in Figure 4. 
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