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Abstract:  

Every year, thousands of people utilize beaches for recreation, but most 

are unaware of Escherichia coli (E. coli) contamination and the possibility of 

acquiring an infection.  In this study, 173 strains of E. coli were isolated from sand 

and adjacent waters from a public beach in Erie County, NY and analyzed for 

genetic relatedness based on sequence differences in the variable regions of the 

16S rRNA gene.  Some of the variable regions (V1 and V6) proved useful in 

constructing phylogenetic trees but the discriminatory power of these regions 

was inadequate to resolve intraspecies differences.  Therefore, whether extant 

populations of E. coli differ between water and sand environments could not be 

determined.  All environmental isolates also were analyzed for the presence of 

the toxin genes: papC, sfa/foc, stx1 and stx2. None of the isolates harbored the 

stx1 or stx2 genes, which code for a potentially lethal Shiga toxin.  However, the 

papC gene and the sfa/foc gene were present in 5.2% (n=9) and 7.5% (n=13) of 

the isolates, respectively.  These genes are known to be associated with the 

ability of E. coli to cause urinary tract infections, and their presence in beach 

sand and recreational water represents a health risk to user populations. 
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1.0 Introduction: 

Microorganisms are ubiquitous in their distribution and inhabit areas from 

extreme environments, such as black smoker vents in the deep sea (Prieur 1997) 

and ice fields in Antarctica (Antony et al. 2016), to more temperate regions of the 

world.  Since its discovery in 1885, the bacterium Escherichia coli (E. coli) has 

been one of the most studied and best characterized microorganisms in the 

world.  Escherichia coli are members of a family of Gram-negative bacteria, 

Enterobacteriaceae, that mainly inhabit the intestinal tract of warm-blooded 

animals which include humans, livestock, birds and wild game, among others.  

Enterobacteriaceae is a large family that includes many pathogens to humans 

such as Shigella, Salmonella, Klebsiella, and Yersinia pestis as well as 

numerous beneficial bacteria.  

Total coliform is a broad term that encompasses several genera of 

bacteria within the Enterobacteriaceae family, some of which can survive in the 

external environment under normal conditions.  Fecal coliform, perhaps more 

accurately known as thermotolerant coliform, are a subset of the total coliform 

bacteria that, with a few exceptions, live only in the intestinal tract of warm-

blooded animals.  The few thermotolerant bacteria genera that can live in the 

external environment are Klebsiella (Knittel et al. 1977), Enterobacter (Patel et al. 

2016), and Citrobacter (Rivera et al. 1988) (KEC coliforms) and to a lesser extent 

E. coli (Ishii et al. 2006).  Escherichia coli is a fecal (thermotolerant) coliform and 

as such has historically been used as an indicator species for environmental 
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contamination by fecal matter since it is assumed that its only natural habitat is 

the intestinal tract of warm-blooded animals.  In addition, it is not considered a 

pathogen to humans under normal circumstances and is believed to have a 

relatively fast die-off rate in the environment (Cote and Quessy 2005).  Due to 

these characteristics, if E. coli is found in water or soil, it is assumed that there 

has been a recent fecal contamination event. 

As natural microbiota, most strains of E. coli are considered harmless and 

even beneficial to the host.  However, some strains are known to harbor toxin 

genes that, when in the wrong location such as the urinary tract, brain meninges, 

or respiratory tract, or in large quantities, can be harmful and in some cases 

cause the death of the human host. There are various exotoxins that can be 

produced by E. coli. Some of the most well-known and documented infections 

are caused by the enterohemorrhagic E. coli (EHEC) serotype O157:H7, a 

subcategory of the Shiga-toxin producing E. coli (STEC) pathotype.  The STEC 

pathotype has historically been known as Verocytotoxin-producing E. coli (VTEC) 

(Karmali 1989). Invasion by these bacteria cause damage to blood vessels which 

can lead to hemorrhagic colitis, and a potentially fatal form of kidney failure 

known as hemolytic uremic syndrome (HUS) 

(https://www.cdc.gov/features/ecoliinfection/index.html).  Outbreaks of STEC 

have been known to occur worldwide. Perhaps the most well-known outbreak of 

the EHEC O157:H7 bacterium in the United States happened in 1993 when over 

500 (laboratory confirmed) persons were infected with the bacteria from several 

dozen Jack-in-the-Box restaurants in the northwestern United States.  This 

https://www.cdc.gov/features/ecoliinfection/index.html
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outbreak resulted in four deaths and almost 200 permanent life-altering injuries 

(https://www.cdc.gov/mmwr/preview/mmwrhtml/00020219.htm).   

Despite being the most well-known foodborne illness outbreak, the 1993 

case was not the first in the United States.  Previous to 1993, there were over 20 

outbreaks that had been documented since 1982 (Rangel et al. 2005).  

According to the Centers for Disease Control and Prevention (CDC), most of the 

outbreaks that have occurred since 2006 have been caused by consumption of 

ground beef and beef products that were contaminated with EHEC O157:H7. 

However, other outbreaks have arisen from a variety of foods such as spinach, 

lettuce, hazelnuts, and cookie dough.  One outbreak in 2011 was even linked to 

travel outside of the United States (https://www.cdc.gov/ecoli/). 

Shiga toxin (stx) is a type of AB toxin which causes dysentery and is 

among the most potent biological toxins known (Henkel et al. 2010). AB toxins 

are also associated with cholera, diphtheria, anthrax, tetanus, pertussis, and 

botulism, among others.  Stx was discovered in the bacterium Shigella 

dysenteriae in the late 1800s by Dr. Kiyoshi Shiga but not characterized until the 

late-20th Century (Brown et al. 1982).  Almost 80 years after the discovery of the 

Shigella bacterium, similar illnesses were identified in humans but were found to 

be caused by rare strains of E. coli, not S. dysenteriae (Riley et al. 1983). It was 

eventually discovered that there were two variations of stx in E. coli, stx1 and 

stx2.  Stx1 is nearly identical to stx of S. dysenteriae differing by only one amino 

acid (Calderwood et al. 1987, Pacheco and Sperandio 2012) while stx2 has 

between 50%-60% similarity to stx1 (Newland et al. 1987, Obrien and Holmes 

https://www.cdc.gov/mmwr/preview/mmwrhtml/00020219.htm
https://www.cdc.gov/ecoli/
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1987, Fraser et al. 2004) and by extension stx itself.  Konowalchuk et al. (1977) 

were the first to characterize these toxins identified from certain E. coli strains.  It 

was shown that stx1 and stx2 had become incorporated into the genome of E. coli 

via bacteriophage (Huang et al. 1987, Makino et al. 1999, Plunkett et al. 1999, 

Yokoyama et al. 2000).  The STEC pathotypes of E. coli got its name from the 

presence of shiga-like toxins in its genetic material so by definition contain at 

least one version of the shiga-like toxin, stx1, stx2, or both (Konowalchuk et al. 

1977).  On average, 5%-15% of STEC infections develop HUS, but this rate can 

be much higher depending on strain and geographic location (Mayer et al. 2012).  

It has been discovered that the stx2 gene is associated with more severe clinical 

diseases than those carrying only the stx1 gene (Boerlin et al. 1999, Ritchie et al. 

2003). 

 In addition to STEC, other important toxigenic pathotypes, including 

enteroaggregative E. coli (EAggEC), enteroadherent E. coli (EAEC), 

enterotoxigenic E. coli (ETEC), enteroinvasive E. coli (EIEC), enteropathogenic 

E. coli (EPEC), and diffusely adhering E. coli (DAEC), can lead to serious 

diarrheal diseases (Estrada-Garcia et al. 2009).  Each of these virulent types has 

different mechanisms by which they infect the host (Clements et al. 2012) and 

can therefore cause diseases of varying severity ranging from mild intestinal 

discomfort up to and including death.  

Another category of toxigenic E. coli is extraintestinal pathogenic E. coli 

(ExPEC).  Extraintestinal pathogenic E. coli are the most common bacteria that 

cause urinary tract infections (UTIs), but they also cause newborn meningitis, 
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pneumonia and bacteremia (Escobar-Paramo et al. 2004, Iranpour et al. 2015, 

Poolman and Wacker 2016). Extraintestinal pathogenic E. coli have been shown 

to cause over 50% of UTIs, 25% of septic infections, 14% of skin and soft tissue 

infections, and 9% of lower respiratory infections from 19 United States hospitals 

between 2007 and 2010.  The estimated number of deaths more than doubled 

during this time period from approximately 40,000 in 2001 to greater than 85,000 

in 2014 (Poolman and Wacker 2016). Several genes have been determined to 

assist in the attachment of ExPEC strains to epithelial cells that line the urinary 

tract, but the two genes of interest in this study are papC and sfa/foc. 

Pyelonephritis-associated pili (Pap) is an adhesion molecule that allows E. 

coli to tightly associate with epithelial cells in the kidney, ureter, and several other 

locations in the human body via a specific galactose-galactose moiety on 

eukaryotic extracellular glycolipids (Breimer and Karlsson 1983, Hultgren et al. 

1991, Hacker 1992) and is the primary adherence factor of uropathogenic E. coli 

(Klemm 1994).  Adherence factors allow for the bacteria to remain in contact with 

the eukaryotic cell despite the normal, regular flow of bodily fluids (Klemm 1994).  

The Pap adhesin is a cluster of 11 genes that all work in concert to form the pilus 

(Klemm 1994).  The specific gene of interest in this cluster is papC, an outer 

membrane usher protein that is necessary for the assembly of the Pap pilus 

(Johnson 1991, Klemm 1994).  Some studies have determined that the P-

fimbrianated strains of E. coli constitute 60%-70% of all UTI cases (Hultgren et 

al. 1991, Hacker 1992), and other studies concluded that up to 50% of adult and 
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90% of children UTI E. coli strains expressed P-fimbriae (Kallenius et al. 1981, 

Johnson 1991).   

Two other adhesion molecules are also implicated in the adherence of 

bacteria to eukaryotic cells: sialic acid-specific (S) fimbriae adhesin (sfa) and F1C 

fimbriae (foc). These adhesins recognize a sialic acid moiety on glycolipids. 

These adhesins can affect the glomeruli of the kidney (sfa) (Korhonen et al. 

1986, Korhonen et al. 1990), the distal tubules and collecting ducts of the kidney 

(foc) (Korhonen et al. 1990)  and the vascular epithelium of the kidney and 

bladder (sfa and foc) (Virkola et al. 1988).  Kunin et al. (1993) determined that up 

to 13% of E. coli isolates from UTIs were positive for sfa and Pere et al. (1985) 

found that up to 30% of E. coli isolates from UTIs were positive for foc. Because 

of these alarming statistics for ExPEC (papC and sfa/foc) and the prevalence and 

severity of STEC illnesses (stx1 and stx2), it is important to determine if toxigenic 

E. coli can persist outside of its typical host habitat. 

In 2004, Escobar-Paramo et al. tested 98 E. coli and Shigella strains for 

the presence of 17 virulence factors (VF).  Of the 98 strains, there were 11 STEC 

(11%, including 9 [9%] EHEC) pathotypes and 9 (9%) ExPEC pathotypes.  They 

developed a phylogenetic tree categorizing the 98 different strains into groups 

based on the genetic background of the individual strains using the sequences of 

six essential genes (trpA, trpB, pabB, putP, icd,and polB) that have been shown 

to exhibit low levels of horizontal gene transfer in E. coli (Lecointre et al. 1998, 

Denamur et al. 2000). Escherichia coli has been shown to consist of seven main 

phylogenetic groups (A, B1, B2, C, D, E and F) based on sequence analysis of 
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two genes (chuA and yjaA) and the small DNA fragment, TSPE4.C2 (Clermont et 

al. 2013).  Escobar-Paramo, et al. (2004) were able to determine that certain VFs 

are contained within certain phylogroups.  They found that stx1 and stx2 were 

present in 100% of both the STEC and EHEC pathotypes.  The stx1 and stx2 

genes were mainly detected within phylogroup E but also were found in 

phylogroups A and B1.  The papC and the sfa/foc genes were present in 8 of 9 

(~89%) of the ExPEC pathotypes.  However, papC was present in 11 other E. 

coli strains and sfa/foc was present in four other E. coli strains as well. The 

ExPEC pathotypes were mostly placed in phylogroup B2 with a few placed in 

phylogroup D (Escobar-Paramo et al. 2004).  Therefore, the stx1 and stx2 genes 

are rarely, if ever, found in the same genetic phylogroups as the papC and 

sfa/foc genes. 

Over the last few years it has been shown that E. coli can persist in 

secondary habitats such as soil (Ishii et al. 2006, Brennan et al. 2010, 

Byappanahalli et al. 2012), wastewater treatment plant effluents (Zhi et al. 2016), 

Cladophora mats in the Great Lakes (Whitman et al. 2003, Ksoll et al. 2007), and 

beach sands and waters (both freshwater and marine) (Whitman and Nevers 

2003, Shibata et al. 2004, Lee et al. 2006, Bonilla et al. 2007, Ishii et al. 2007, 

Walk et al. 2007, Yamahara et al. 2009, Abdelzaher et al. 2010, Solo-Gabriele et 

al. 2016) among other places (Burton et al. 1987, Lyautey et al. 2010, 

Chandrasekaran et al. 2015, Jang et al. 2015). Of particular interest is the 

bacterial load associated with beach water and sands since beach-related 
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activities are favorite pastimes for many in the summer.  Stevenson (1953) 

showed that there have been a larger number of individuals who developed 

some kind of illness while swimming compared to non-swimmers.  It also was 

shown in a multi-year epidemiological review of several locations that there was 

a strong correlation between bacterial loads on beaches and gastrointestinal 

illnesses (Cabelli et al. 1982).  According to the Ambient Water Quality Criteria 

for Bacteria regulation released by the US Environmental Protection Agency 

(EPA) in 1986, when E. coli concentrations become greater than 235 colonies 

per 100mL of water from a single sample or if 5 samples within a 30 day period 

have a geometric mean of at least 126 colonies per 100mL of water, fresh water 

recreational beaches must close down (https://www.epa.gov/beaches).   

However, the only samples considered during the monitoring of beaches 

are obtained from the water column.  It has been shown that the levels of 

bacteria detected in beach sands may be several logs higher than those in water 

(Burton et al. 1987).  Most beach sand studies to date have focused on sampling 

within one meter on either side (beachside or waterside) of the swash zone, or in 

the case of marine beaches, the area between low and high tides.  Other studies 

have shown that the numbers of bacteria that inhabit the sand are on average 

one to two logs higher than the surrounding water (An et al. 2002, Alm et al. 

2003, Whitman and Nevers 2003, Whitman et al. 2003, Yamahara et al. 2009, 

Abdelzaher et al. 2010).  In 2010, Abdelzaher et al. showed that the bacterial 

levels in wet sands from an intertidal zone of a beach in Florida were two to four 

https://www.epa.gov/beaches
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orders of magnitude higher than in the adjacent water column, and that the 

bacterial levels in the dry sand above the intertidal zone were one to three orders 

of magnitude higher than levels observed in the wet sand.  Whitman and Nevers 

(2003) noted that the E. coli counts were up to two orders of magnitude higher in 

foreshore beach sands than the adjacent waters at a Lake Michigan beach.  

Similarly, Bonilla et al. (2007) showed that bacterial levels were up to four orders 

of magnitude higher in dry sands than in adjacent water samples. 

A previous study at Bennett Beach (Angola, NY) discovered an 

unexpectedly large E. coli population present in the beach sand six meters up 

beach from the swash zone (unpublished data) in what would seem to be 

conditions that are not conducive (e.g. relatively low water content in the sand) 

for persistence and growth.  Since E. coli have been discovered to exist in 

sands/soils and waters, some researchers have postulated that certain strains 

may have become “naturalized” to these environments and are therefore 

questionable for use as a fecal indicator bacterium (FIB) for recent fecal 

contamination events (Ishii et al. 2006, Ishii and Sadowsky 2008, Brennan et al. 

2010, Zhang and Yan 2012).  Perchec-Merien and Lewis (2013) defined a 

naturalized population of E. coli as one that “does not derive directly from fecal 

sources and has evolved without host contact for a sufficiently long time to 

demonstrate reproducible characteristics”.  Some researchers have established 

that the length of survivability in different types of soil for commensal E. coli and 

for EHEC O157:H7 is approximately the same, indicating that commensal E. coli 
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can be utilized as an indication of the presence of the more virulent strain 

(Mubiru et al. 2000).  However, Smith et al. (2009) discovered that the incidence 

of FIB did not correlate to the presence of Shiga-toxin producing E. coli. In this 

case, the relative abundance of the Shiga-like toxin 1 and 2 (stx1 and stx2) genes 

were variable and did not show correlation to the abundance of non-toxigenic 

commensal E. coli.   

Certain E. coli strains have been shown to have better adapted to growing 

outside of their primary habitat (Gordon et al. 2002).  This information leads to 

the assumption that naturalized populations can occur and perhaps can begin to 

replicate in the secondary environment under certain conditions (Ishii et al. 2006, 

Ishii and Sadowsky 2008, Ishii et al. 2010).  Over the past few years, several 

researchers have determined that among the different phylogroups within the E. 

coli species that the “naturalized” populations tend to fall into the B1 phylogroup 

(Escobar-Paramo et al. 2004, Walk et al. 2007). Walk et al. (2007) also 

hypothesized that the individuals in the B1 phylogroup may possess certain traits 

that allow them to persist and reproduce in the secondary habitat.  Zhang and 

Yan (2012) found that the intracellular concentration of trehalose in sand-

associated E. coli isolates was elevated and that assisted in the resistance to 

desiccation and the survival of the organism.  Deng et al. (2014) also have 

postulated that there is a genetic marker, a putative glucosyltransferase gene 

(ycjM), that can differentiate between enteric strains of E. coli and naturalized 

strains because it appears to be enteric-specific.   
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Escherichia coli is still used as a FIB to indicate recent fecal contamination 

but its effectiveness as a FIB would be questionable if naturalized E. coli have a 

distinct genetic background.  In 1994 Schmidt and Relman laid out a fairly new 

method of determining evolutionary relatedness among species.  It focused on 

the small subunit (SSU) of the ribosomal RNA (16S rRNA) gene.  At the time it 

was best done by manually aligning an RNA hairpin structure against known 

organisms and then forming a “best-fit” tree that was compatible with the 

sequence data.  Over the years the techniques for analyzing evolutionary 

relatedness have improved greatly.  In the last several decades, many 

researchers have used 16S rRNA gene sequencing to identify and classify 

microorganisms from multiple environments, proving its usefulness (Loong et al. 

2016, Makapela et al. 2016, Pu and Hou 2016, Andini et al. 2017).  Because 16S 

rRNA gene sequencing has been shown to accurately determine genetic 

variation among organisms, the use of this technique should be considered for 

determining possible genetic variabilities in microorganisms (e.g. E. coli) found in 

beach water and sands.   

 Since its first use in 1977 for distinguishing different organisms from each 

other (Woese and Fox), the SSU of ribosomes (16S for prokaryotes and 18S for 

eukaryotes) has been established as a new, more accurate classification system 

(Three Domains: Bacteria, Archaea, and Eukarya) for all organisms based on 

their molecular components (Woese et al. 1990) than the five kingdom 

classification system.  Because ribosomes are a central part of cellular 
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machinery, the molecular makeup of ribosomes of all organisms within their 

respective domains is highly conserved.  This allows the SSU to be an effective 

chronometer for determining how closely species are related to one another.  

The 16S species of the SSU in prokaryotic ribosomes has been used 

successfully in the comparison of genomes for profiling bacterial communities 

(Lane et al. 1985, Bernhard and Field 2000a, b, Chakravorty et al. 2007, Guo et 

al. 2013, Loong et al. 2016).  The gene that encodes the 16S ribosomal RNA 

(rRNA) protein is approximately 1500bp in length and contains highly conserved 

regions as well as 9 interspersed hypervariable regions (named V1 through V9) 

which have been shown to be useful in distinguishing among bacteria 

(Chakravorty et al. 2007, Yang et al. 2016). Coenye and Vandamme (2003) 

determined that there were specific variable regions that were more likely to 

distinguish different levels of taxa.  In their study, it was determined that variable 

regions one and six had the most heterogeneity and were therefore more likely to 

distinguish organisms at the species level. According to Chakravorty et al. 

(2007), variable regions two and three can determine organisms at the genus 

level and V3 also contained the most single-nucleotide polymorphisms and 

therefore was able to distinguish between closely related species from the 

Enterobacteriaceae family. Variable region four was shown by Yang et al. (2016) 

to most closely resemble the same relatedness as if the entire 16S rRNA gene 

were used in the classification and was therefore not the best region to determine 

species identity. Because of the characteristics mentioned above and the fact 
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that there are highly conserved regions as well as nine interspaced hypervariable 

regions (Tringe and Hugenholtz 2008), this study focused on the use of four 

hypervariable regions (V1, V2, V3, and V6) to determine genetic relatedness of 

E. coli isolates from beach sands and adjacent beach waters. 

The aim of this project was two-fold.  The first aim was to determine if 

there was a genetic difference between the E. coli populations in water and 

beach sands six meters up from the swash zone.  To do this, the 16S rRNA 

genes of 173 different isolates of biochemically identified E. coli cultures were 

sequenced to determine the relative genetic relatedness of the isolates from the 

beach sand to the isolates from the water. The second goal was to determine if 

those E. coli in beach sands and in the adjacent waters were carrying the stx1, 

stx2, sfa/foc or papC genes.  The presence of these four toxin genes would 

indicate that there are potential pathogens in these external environments that 

could cause public health problems.   

 

2.0 Materials and Methods 

2.1 Beach sand and water collection:  

Sand and water samples were collected from Bennett Beach, a public 

beach in Erie County, NY, on three different occasions during the summer of 

2016 (from a previous project): May 25, June 29, and July 26; and on two 

different occasions during the summer of 2017: June 21 and August 2.   There 

were four different collection sites, two water sites and two sand sites.  Sites 2 
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(water) and 13 (sand) were located on the South (left) side and sites 3 (water) 

and 9 (sand) were located on the North (right) side of the beach looking lake-

ward (Figure 1).  During sampling select environmental parameters were 

recorded: water and air temperatures, rainfall within the previous three and/or 

seven days, number of waterfowl on the beach, and number of people on the 

beach [Appendix D]. 

In 2016, sterile garden spades were used to collect beach sand 

approximately six-m up beach from the swash zone.  The upper two cm of the 

sand were removed with a sterile spatula and sand was then collected down to 

the ten-cm mark based on the markings of the spades and placed inside sterile 

Whirl-Pak® bags (Nasco).   

In 2017, sand samples were collected using a core method.  Using sterile 

razor blades, the end of a 60cc syringe was cut off aseptically in a Biosafety 

cabinet and placed back into the original packaging until on site at the beach.  As 

in 2016, the top two cm of sand were removed, the plunger was removed from 

the syringe, and a core sample was taken to fill up the tube of the syringe.  The 

filled syringe was placed inside sterile Whirl-Pak® bags (Nasco) to contain 

anything that would potentially fall out.  All samples were stored on ice until 

processing.   

Water samples from both years were collected in sterile one-L Corning 

bottles containing 0.83 mL of a 10% sodium thiosulfate solution to neutralize 

chlorine.  Wading out to one-m depth in the water column and facing lake-ward, 

the bottle was submerged approximately 45 cm.  The cap was removed 
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underwater and the bottle filled completely and then recapped while still 

submerged.  The water was stored on ice until processing.  All samples were 

processed within four hours of collection. 

2.2 Beach sand processing: 

In 2016, 50g of sand were aseptically measured out in a Biosafety cabinet 

and placed into a sterile 500-mL Gibco bottle containing a stir bar.  In 2017, the 

sample was sifted through a clean and ethanol sterilized 4mm sieve to remove all 

large objects from the sample.  Fifty-g of sieved sand were then placed into a 

sterile 500-mL Corning bottle containing a stir bar.  Four-hundred and fifty mL of 

sterile 18MΩ (Millipore) water was added to each bottle to create a one to ten 

dilution.  The soil and water were stirred at full speed for two min on a magnetic 

stir plate and then allowed to settle for three min. 

2.3 IDEXX Most Probable Number (MPN) processing: 

Using the standardized method 9223B of the National Environmental 

Methods Index (NEMI) (https://www.nemi.gov/methods/method_summary/5583/), 

100-mL of water from the lake or the agitated sand solution was added to an 

IDEXX (Westbrook, ME) sample bottle containing sodium thiosulfate (cat 

#WV120PET-200) for chlorine inactivation.  A pouch of IDEXX Colilert 18 (cat 

#WP100I-18) was added to the water and agitated until completely dissolved.  

Two drops of IDEXX AntiFoaming agent (cat #WAFDB) were added to the bottles 

to eliminate bubbles.  The entire volume was poured into a 97-well IDEXX tray 

(cat #WQT2K) and then the tray was resealed using the IDEXX Quantitray Plus 

sealer (cat #WQTSPLUS).  Samples were incubated at 44.5°C in a circulating 

https://www.nemi.gov/methods/method_summary/5583/
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water bath (ThermoScientific Lindberg Blue M) for 18-22 hr.  All wells were 

scored as either positive for Fecal Coliforms (FC) if the wells were yellow or 

negative for FC if there was no color change. The yellow wells also were scored 

as positive for E. coli if they demonstrated blue fluorescence under long 

wavelength (366nm) UV light.  The numbers of positive wells were compared to a 

published MPN chart (IDEXX, Westbrook, Maine) to determine the number of FC 

and E. coli per 100-mL of water or 100-g of sand. 

2.4 Sample processing: 

Selected IDEXX tray wells that scored as positive for E. coli (yellow with 

blue fluorescence) were subsampled to isolate E. coli for subsequent 16S rRNA 

analysis.  A sterile one-mL tuberculin syringe was used to aseptically aspirate 

0.8-mL of liquid from wells scored as positive for FC and E. coli.  This was added 

to sterile glycerol (20% final concentration) and frozen at -80°C until further 

processing. Since there was a possibility of mixed cultures in the IDEXX positive 

wells, the frozen samples were thawed on ice and resuscitated for E. coli 

isolation and identification. 

 All samples collected in 2016 were for a different study and as a 

consequence not many E. coli positive IDEXX wells were selected from dates I 

(May 25, 2016) and II (June 29, 2016).  On sample date III (July 26, 2016), all E. 

coli positive IDEXX wells from each site were subsampled to increase the 

number of E. coli isolates from that previous study.  On sample date IV (June 21, 

2017), 20 IDEXX wells that were positive for E. coli were randomly subsampled 

for each site.  However, for sample date V (August 2, 2017), there were not 20 
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positive wells in the IDEXX trays for every site.  Therefore, all positive E. coli 

samples were saved and used from each site to ensure the number of isolates 

would be large enough to provide meaningful comparisons (Table 1). 

The thawed samples were then streaked onto MacConkey agar (Difco) for 

isolation and putative E. coli identification. Colonies that exhibited a pink color, 

indicating the fermentation of lactose, on MacConkey agar were picked and put 

onto nutrient agar slants (Difco) to be used as stocks for further biochemical 

testing.  The pure cultures were then added to 1% tryptone broth to test for the 

presence of tryptophanase (the indole test) and to urea broth to test for the 

production of urease. Those isolates that were indole positive and urease 

negative were then added to EC broth with MUG (4-methylumbelliferyl--D-

glucuronide) (Difco) for 18-22h in a 44.5°C circulating waterbath.  Escherichia 

coli contains the -galactosidase enzyme and therefore breaks down lactose to 

glucose and galactose, which is then metabolized and creates gas as an end 

product that will accumulate in an inverted Durham tube.  Most E. coli also 

contain -glucuronidase, an enzyme that will hydrolyze MUG to 4-

methylumbelliferone, which fluoresces as a blue-white light under long 

wavelength (366nm) ultraviolet light.  All selected colonies that were positive for 

gas production and fluorescence as well as lactose fermentation, urease 

negative, and indole positive were considered to be E. coli.  All samples 

biochemically determined to be E. coli [Table 2] were grown in nutrient broth 
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(Gibco) and then frozen with 20% glycerol as a pure culture for further 

processing.   

2.5 Cell lysis and PCR: 

Pure cultures of biochemically identified E. coli were lysed in order to 

collect the genomic DNA (gDNA) of the cells.  In brief, one mL of an overnight E. 

coli LB broth culture (at 37°C with 200rpm agitation) was added to a sterile 1.5-

mL Eppendorf tube for processing.  The sample was centrifuged for five min at 

13,300xg at room temperature (RT) after which the supernatant was discarded.  

Four-hundred L of Fast Lysis buffer (mericon® DNA Bacteria Plus kit, cat no. 

69534) were added to the cell pellet and the pellet was resuspended.  This entire 

cell mixture was then added to a pathogen lysis tube supplied with the kit 

(containing ~0.5mm glass beads) and vortexed for 10 min at maximum speed.  

The vortexed tubes were then centrifuged at RT for five min at 13,300xg.  At 

least 100 L were taken from the lysis tubes and placed into a new set of 

microcentrifuge tubes.  The gDNA was then quantitated using the Implen 

NanoPhotometer™ (Implen P-360, 7122 V2.3.1), diluted with nuclease-free 

water to a concentration of 10 ng per L, and immediately used for polymerase 

chain reaction (PCR) for the 16S rRNA gene as well as all four toxin genes (see 

below). 

Using the diluted gDNA, the 16S rDNA was amplified by PCR using 

published primers: 8F and 1492R(s) (Eden et al. 1991) [Appendix A].  By using 
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the 8F and 1492R(s) primers, the entire ~1500bp 16S rRNA gene was amplified 

with a thermocycler (Bio-Rad T100 ThermoCycler) [Appendix B]. 

2.6 Sequencing: 

After amplification of the 16S rRNA gene, the PCR product was 

quantitated using the Qubit fluorometer (Invitrogen, Qubit 2.0 Fluorometer, 

V3.10) with the broad range protocol and reagents.  The samples were then 

diluted with nuclease-free water to the appropriate concentration of four ng per 

L in a total volume of 10 L for all beach E. coli samples as well as two control 

(i.e. known) E. coli cultures (ECOR60 and E. coli K-12), and sent to GenScript 

(Piscataway, NJ, www.genscript.com) for sequencing using the 8F primer 

[Appendix A].  

2.7 Sequence preparation: 

 All sequences were retrieved from the GenScript website in .ab1 file 

format.  In order to compare the sequences, they were individually converted into 

FASTA file format using the online converter at 

sequenceconversion.bugaco.com/converter/biology/sequences.  The FASTA 

files were opened and saved using the Notepad program in order to keep the file 

as text only.  As a control for sequence quality, the free program Chromas (v. 

2.6.5) was used to visualize the electropherograms and trim any low quality 

reads.  As another level of identification, all files were BLAST searched on the 

NCBI website (http://www.ncbi.nlm.nih.gov) directly from the Chromas program 

to verify that they were E. coli. 

http://www.genscript.com/
file:///C:/Users/pettibgw/AppData/Local/Microsoft/Windows/INetCache/Content.Outlook/1JR40Y94/sequenceconversion.bugaco.com/converter/biology/sequences
http://www.ncbi.nlm.nih.gov/
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2.8 Multiple sequence alignment: 

Using the statistical program, R (https://www.r-project.org, V. 3.5.2 

“Eggshell Igloo”), the sequences of all 173 beach samples, two control E. coli 

strains and three E. coli 16S rDNA sequences selected from the NCBI website 

(www.ncbi.nlm.nih.gov, accession numbers: MH782105.1, NR 024570.1, and 

AR657803.1) were aligned and compared using the add-on msa package 

(Bodenhofer et al. 2015).  All parameters used were the default parameters in the 

ClustalOmega format to obtain relatedness for all sequences. Knowing that 

specific variable regions are more applicable for certain levels of classification 

(Chakravorty et al. 2007, Yang et al. 2016) variable regions one, two, three, and 

six were analyzed individually to determine if they could be used to differentiate 

between the sand isolates and the water isolates. 

In order to determine the similarity of the samples for variable regions one 

and two, the default ClustalOmega format was used and specific base pair 

ranges were parsed out of the aligned sequences and compared [Appendix C].  

Variable regions three and six were compared using the more stringent MUSCLE 

default parameters (Edgar 2004).  Therefore, in order to compare the differences 

of those variable regions, any sequence that was less than 960bp long (n=65) 

was removed and the remaining sequences were aligned and compared using 

the default Muscle alignment parameters in R [Appendix C]. The command line 

program TeXstudio (v. 2.12.14) was also utilized to create a graphical 

representation of the level of conservation of aligned bases of the V6 region of 

the 16S rRNA gene [Appendix G].   

https://www.r-project.org/
http://www.ncbi.nlm.nih.gov/
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2.9 Toxin gene amplification: 

The toxin genes of interest in this study were stx1, stx2, sfa/foc, and papC.  

Using published primers (Escobar-Paramo et al. 2004, Zhi et al. 2016) [Appendix 

A] PCR was performed on all beach E. coli strains isolated in this study to look 

for the presence of those toxin genes [Appendix B].  Analysis of the presence of 

the toxin genes was recorded as percentages of all E. coli isolates.   

All PCR reactions included positive and negative controls.  Genomic DNA 

for the stx1 and stx2 genes was purchased through ATCC (cat# BAA-2196D-5) 

and for the sfa/foc and papC genes E. coli reference strain, ECOR60, was 

purchased from the STEC Center at Michigan State University 

(www.shigatox.net).  Two negative controls (E. coli strain K-12 [ATCC # 25404] 

and nuclease-free water) were utilized. 

 

3.0 Results 

3.1 Sample collection: 

Since the study samples were from the external environment, many 

factors could potentially play a role in the number of positive samples that were 

collected.  On average, the air temperature was 21.8°C and the water 

temperature was 21.6°C.  There was an average of 27.4 waterfowl (mostly gulls) 

and 8 people on the beach for all sample dates [Appendix D]. 

The uneven distribution in samples from 2016 versus those from 2017, 

with 2016 making up only 15.6% of the total number of samples and 2017 

http://www.shigatox.net/
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making up the remaining 84.4% (Table 2), did not allow for an accurate 

comparison across two summers therefore the remainder of this study focused 

on determining if there was a difference of E. coli populations among four 

collection sites. 

3.2 Enumerations: 

Using the IDEXX identification system (standard method 9223B), the MPN 

of E. coli positive wells ranged from one organism/100mL of sample at site 2 

(water) on May 25, 2016 to over 28,000 organisms/100g of sample at site 9 

(sand) on July 26, 2016 (Figure 2a).  The ratio of E. coli to fecal coliforms in most 

water and sand samples ranged between 60% and 80%. However, several 

samples had 100% E. coli to fecal coliforms ratio, while the lowest percentage 

was 4% from site 13 (sand) on June 29, 2016 (Figure 2b).   

In all, 173 E. coli isolates from the beach environment: two from May 25, 

2016; six from June 29, 2016; 19 from July 26, 2016; 75 from June 21, 2017; and 

71 from August 2, 2017, were used in the analysis of the 16S rRNA gene as well 

as the presence of the toxin genes (Table 2).  The water sites had 32 and 35 

(18.5% and 20.2%) E. coli, respectively and the sand sites had 61 and 45 (35.3% 

and 26%) E. coli, respectively (Figure 3).  Water isolates made up approximately 

one-third of the tested samples so the discrepancy in numbers should be 

considered during analysis.   

3.3 16S rRNA gene analysis: 

The full 16S rRNA gene phylogenetic alignment of all 178 sequences is 

found in Appendix E which indicates that there are no genetic differences 
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between the water sites (2 and 3) and the sand sites (9 and 13).  Phylogenetic 

trees were also constructed for variable regions one and two using the 

ClustalOmega multiple sequence alignment parameters as well [Appendices E2 

and E3]. However, phylogenetic trees for variable regions three and six were 

formed using the Muscle alignment program parameters in R-studio [Appendices 

E4 and E5].  The variable region 6 showed the most variation, but as is shown in 

Appendix G the level of conservation of bases is still rather high. None of the 

phylogenetic trees constructed indicated a genetic difference between water 

(sites 2 & 3) and sand (sites 9 & 13) isolates. 

Since the shorter sequences affected the distance matrix calculated in the 

R program code, a more accurate representation of the relationship of the 

samples was developed by removing all sequences less that 960bp (n=65).  

Therefore, all sequences over 960bp (n=110) as well as the three sequences 

retrieved from NCBI were analyzed using the Muscle default parameters 

encompassing V1 to V6 regions (Figure 4).  As a further breakdown, all samples 

from the North side of the beach (sites 3 and 9) [Appendix E6], those from the 

South side of the beach (sites 2 and 13) [Appendix E7], the sand isolates only 

(sites 9 and 13) [Appendix E8], and the water isolates only (sites 2 and 3) 

[Appendix E9] which were over 960bp were aligned using the Muscle multiple 

sequence alignment parameters encompassing variable regions one through six. 

To compare all of the sequences to one another, ClustalOmega was 

utilized due to its accuracy and speed over other multiple sequence alignment 

programs such as Kalign, MAFFT, and T-Coffee since the number of sequences 
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was small (t<200) (Sievers et al. 2011). In the ClustalOmega alignment and 

successive phylogenetic trees, there was no apparent pattern of genetic 

differences from water samples (sites 2 and 3) and sand samples (sites 9 and 

13) [Appendix E1].  As an additional level of comparison, certain variable regions 

were analyzed individually, and it was shown that variable regions one and six 

were able to establish different genetic signatures and create phylogenetic trees 

with some level of variation [Appendices E2 and E5].  In analyzing variable 

regions two and three, there was no difference between any of the 178 samples 

that were aligned for variable region two [Appendix E3] and the 113 samples 

aligned for variable region three [Appendix E4].  By using the more stringent 

parameters of the MUSCLE multiple sequence alignment program (Edgar 2004), 

the analysis of all of the combined variable regions available (one through six) 

showed the most promising phylogenetic tree (Figure 4).   

3.4 Toxin gene analysis: 

All 173 beach environment E. coli gDNA samples were subjected to PCR 

to determine if they contained the toxin genes: papC, sfa/foc, stx1, and stx2 using 

the primers and conditions listed in Appendices A and B.  The stx1 and stx2 

genes were not found in any of the 173 isolates (data not shown).  It was also 

determined that the papC gene was present in 5.2% (n=9) of the isolates, and 

that the sfa/foc gene was present in 7.5% (n=13) of the isolates (Figure 5a).  It is 

important to note that some bacteria contained both genes and others contained 

only one or the other.  There were five isolates (2.9%) that contained only the 
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papC gene, nine (5.2%) that contained only the sfa/foc gene, and four (2.3%) 

that contained both genes (Figure 5b).   

Initially, the annealing temperature for PCR of the papC and sfa/foc genes 

was 63°C.  It was determined that there was non-specific binding of the primers 

therefore the annealing temperature was increased by 2°C to 65°C for the final 

data presentation.  Since increasing the annealing temperature increases the 

stringency of the PCR and reduces the number of false-positive results (Ishii and 

Fukui 2001), it was not necessary to repeat all of the samples that originally 

tested negative for those toxin genes. 

 

4.0 Discussion 

In general, every strain of E. coli can be categorized into one of seven 

different phylogenetic groups based upon a multiplex PCR system that 

determines the genetic background of the strain (Clermont et al. 2013).  Genetic 

testing has categorized the highly virulent EHEC O157:H7 strains, which are 

known to originate from ruminants (Lim et al. 2010), mostly in phylogroup E with 

a few being placed in A and B1 (Clermont et al. 2013).  In addition, Tymensen et 

al. (2015) concluded that naturalized E. coli populations fell within the B1 

phylogroup as well.  This suggests that the genetic background between certain 

extremely virulent strains of E. coli and the naturalized populations are similar.  In 

2000, Clermont et al. determined that virulent extraintestinal pathogenic E. coli 

were placed in the phylogroup B2 and occasionally in phylogroup D.  This was 
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further corroborated by Johnson et al. (2017), who also found in the same study 

that ExPEC strains were found in many surface waters as determined by the 

presence of the papC and sfa/foc genes among others. Based upon these 

findings, ExPEC and EHEC strains do not have the same genetic background.   

Since variable regions two and three are utilized to differentiate organisms 

to the genus level (Chakravorty et al. 2007), it is not surprising that the 

phylogenetic trees constructed using these variable regions [Appendices E3 and 

E4] did not demonstrate strain differences because all of the organisms analyzed 

belong to the genus Escherichia.  Also because V3 region is highest in single 

nucleotide polymorphisms (SNPs) (Chakravorty et al. 2007), the one outlying 

sample (V13I) [Appendix E4] could be explained by a single nucleotide 

difference. 

Given the transient nature of water, it was expected that there would be 

fewer E. coli found in the water versus the sand as has been previously shown 

(Burton et al. 1987, Whitman et al. 2003).  The pattern observed in this study 

agreed with other investigators who have reported differences of one to two 

orders of magnitude higher levels of E. coli in sands versus adjacent water (An et 

al. 2002, Alm et al. 2003, Whitman and Nevers 2003, Whitman et al. 2003, 

Abdelzaher et al. 2010) [Figure 2a and Appendix F].   

Considering that all E. coli originates from an intestinal environment, there 

is potential for strains of different genetic backgrounds to exchange genetic 

information via horizontal transfer.  Enterohemorrhagic E. coli (EHEC) O157:H7 

is the most common intestinal infection that results in hemolytic uremic syndrome 
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(HUS) (Bitzan et al. 1993).  However in Germany in 2011 there was an outbreak 

of E. coli infections resulting in HUS from strain O104:H4 that is usually 

characterized as a different pathotype: enteroaggregative E. coli (EAEC) 

(Navarro-Garcia 2014).  This novel hybrid was determined to have a prophage 

encoding Shiga-like toxin that is characteristic of EHEC, which causes diarrheal 

diseases that can produce HUS (Bielaszewska et al. 2011, Mellmann et al. 2011, 

Rasko et al. 2011).  This hybrid, which is considerably more virulent than its 

EHEC cousin, acquired the prophage via horizontal gene transfer (Rasko et al. 

2011). Recently it has been shown that EHEC has formed hybrid pathotypes with 

enteropathogenic E. coli (EPEC) as well (van Hoek et al. 2019).  While hybrid 

pathotypes of EHEC and EPEC or EAEC have been shown to exist, it is 

seemingly rare for hybrids of extraintestinal pathogenic E. coli (ExPEC) and 

EHEC to exist.  However, in January of 2019, De Rauw et al. established the 

emergence of one such hybrid in which the source of infection is unknown.  The 

development of HUS from urinary tract infections (UTI), while uncommon, has 

been recorded as well.  In a case report in 2001, Hogan et al. reported of several 

cases of HUS resulting from UTI in which death of a few patients had resulted, as 

well as many long-term effects on the health of the individuals.  While this study 

did not apprise on the presence of the papC or sfa/foc genes, it is probable that 

the E. coli that originally caused those UTI were of the ExPEC pathotype.  Hogan 

et al. (2001) suggested that any future cases of UTI should be screened for 

Shiga toxin production especially if the patients exhibit HUS. These examples 

indicate that the sharing of virulent characteristics is a common phenomenon and 
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is of great concern to public health.  Indeed, Wright (2010) reported that a clinical 

isolate of A. baumannii exhibited resistance characteristics from an historical 

horizontal gene transfer event that initiated in a soil environment.  However, that 

transfer appears to be plasmid-based and the location of the papC and sfa/foc 

genes are on pathogenicity islands on the bacterial chromosome (Najafi et al. 

2018) which would decrease the possibility of horizontal gene transfer. 

  Because of the nature of the E. coli numbers in sand and the relative 

stability of the sand environment, it was expected that there would be a higher 

percentage of E. coli strains from the sand sites, 9 and 13, that would show 

positive results for the toxin genes versus the water sites, 2 and 3.  However, 

unexpectedly, site 3 (up-beach water) had higher numbers of toxin gene positive 

results relative to the sand. Thirteen of the 18 samples that tested positive came 

from site 3 while four came from site 9 (up-beach sand adjacent to site 3) and 

only one came from site 13 (down-beach sand) (Figure 6).  Site 2 showed no 

positive samples for toxin genes.  One possible explanation for this is that the 

water site 3 is closer to the Big Sister creek output into Lake Erie than the water 

site 2 (Figure 1).  In a previous study conducted on Bennett Beach, the MPN of 

E. coli water isolates from Big Sister Creek averaged 1049.5 CFU/100mL over 

three sample dates (unpublished data).  This average suggests the strong 

possibility that the E. coli that were found in the water site (site 3) in this study 

could, in part, originate from Big Sister Creek.  However, it cannot be definitively 

determined that Big Sister creek is the source of the influx of papC and sfa/foc 
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positive E. coli isolates since there were no samples taken from that creek in this 

study.   

This study found the presence of markers that are associated with ExPEC 

in beach sand and water but did not demonstrate the presence of toxin genes 

associated with EHEC.  There is no indication that the E. coli collected from the 

beach sands and waters in this study were of a hybrid pathotype.  This agrees 

with Bauer and Alm (2012) who found that the presence of stx1 and stx2 toxin 

genes were uncommon in sand-isolated E. coli while attachment genes such as 

papC and sfa/foc were frequently detected. However, the phenomenon of hybrid 

pathotypes should be considered during future studies.   

The presence of papC in E. coli-caused UTI samples is between 60-90% 

(Kallenius et al. 1981, Hultgren et al. 1991, Johnson 1991, Hacker 1992), and 

sfa/foc presence ranges from 13-30% (Pere et al. 1985, Kunin et al. 1993) as 

stated previously.  Rahdar et al. (2015) also found that the clinical isolates of E. 

coli UTI samples contained high percentages of papC and sfa/foc genes.  This 

study showed the percentage of papC was only 5.2% and sfa/foc was only 7.5%.  

However, the samples collected in this study are from an external environmental 

source which could explain the discrepancy in percent positive samples.  

Preliminary data from an ongoing project involving 100 known E. coli UTI 

samples suggests that papC is present in approximately 75% and sfa/foc is 

present in approximately 30% of the samples.  These data are supportive of the 

average percent positive in those previous studies. 
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The current study was designed to evaluate the possibility of discerning a 

genetic difference in E. coli isolates from beach sands and adjacent waters over 

two years and four sites based on 16S rRNA gene sequences, and also to 

determine if the presence of certain toxin genes could be detected in those 

strains.  Toxin genes that are associated with extraintestinal infections were 

found to be present in both sand and water isolates.  However, there is no 

distinguishing genetic pattern based on the 16S rRNA gene sequences obtained 

in this study of samples from sites 2 and 3 (water) to sites 9 and 13 (sand) based 

upon the 16S rRNA gene.  This does not necessarily mean that there is no 

difference in the genetic background of samples from water versus samples from 

sand, however. It should be noted that none of the samples had the full 16S 

rRNA gene sequenced.  Having the entire gene sequenced with high accuracy or 

using alternative methods could potentially lead to the ability to notice differences 

between the water and sand populations of E. coli.  For example, using 

horizontal, fluorophore-enhanced repetitive extragenic palindromic PCR 

(HFERP) analysis Ishii et al. (2007) identified putative naturalized populations of 

E. coli isolated from freshwater sediments and sands. 

Also, there are other portions of the genome that should be considered in 

order to determine whether the samples are genetically distinct.  The addition of 

genes used by Escobar-Paramo et al. (2004) (trpA, trpB, pabB, putP, icd,and 

polB) could aid in the ability to distinguish distinct genetic backgrounds if they are 

present.  Another possibility is to look at the intracellular concentration of the 

sugar trehalose which has been determined to help E. coli resist desiccation 
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(Zhang and Yan 2012).  Using any of the above genetic markers or a 

combination of them in addition to the 16S rRNA gene will increase the likelihood 

that any differences in genetic background could be discovered. 

While the 16S rRNA gene is traditionally used as a chronometer for 

evolutionary relationships among species (Woese et al. 1990), it should be 

combined with other genes and tests to determine if there is a genetic distinction 

among E. coli.  Also, it was shown in this study that toxin genes can exist in E. 

coli collected from an external environment; however, it is not known at this time 

how long the cultures that harbor these toxin genes will persist outside of the 

normal animal host.  The presence of the genes found in E. coli-caused urinary 

tract infections in beach waters and sands could lead to an increased incidence 

of UTIs seen in recreational beach users and potentially alter the current practice 

of using E. coli as a FIB for recent contamination events for the purposes of 

beach closures. 
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5.0 Figures and Tables:

 
Figure 1: Bennett Beach aerial photograph with sample sites identified.  Sample sites two and three were 

taken approximately six-m offshore from a depth of 45-cm in the water column.  Samples nine and 13 were 

collected six-m inland from the swash zone at a depth of 10-cm from the top layer of the sand. 

 

Site 2 

Site 3 

Site 9 

Site 13 
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Figure 2: a) Log10 of E. coli CFU/100mL by site. Wells were scored as positive for E. coli if the contents 

turned yellow (indicating the activity of -galactosidase) and also had a blue florescence when exposed to 

366nm UV light (indicating the activity of -glucuronidase). b) Percent E. coli of Fecal Coliforms by site. The 

number of E. coli positive wells (yellow and fluorescent wells) was divided by the number of fecal coliforms 

positive wells (yellow only wells) to determine overall percentages. 
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Figure 3: a) Actual number of strains analyzed by site. b) Percent of overall strains by site.  The number of 

strains selected from each site was divided by the total number of strains analyzed (n=173) to determine the 

percentage of strains from each site.   
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Figure 4: Phylogenetic tree of variable regions 1 through 6 using all samples over 960bp (n=113) analyzed 

using the MUSCLE multiple sequence alignment parameters. After sequences were aligned, base pairs 69 

to 1043 were parsed out and this tree was generated.  The thick black line indicates the phylogenetic 

location of all water samples showing no pattern of relatedness.  
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Figure 5: a) Percent positive toxin genes overall. b) Percent of toxin gene combinations.  Positive samples of 

all combinations (total papC, total sfa/foc, papC only, sfa/foc only, and both papC and sfa/foc positive) were 

divided by the total number of samples (n=173) analyzed for the toxin genes.  
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Figure 6: 2% TAE agarose gel of papC and sfa/foc positive samples. The papC gene is 328bp and the 

sfa/foc gene is 407bp. Ladder is the Quick-Load Purple 50bp DNA ladder from New England Biolabs (cat# 

N0556S) with the 500bp marker identified. Samples: L=DNA ladder, 1=dH2O (-) control, 2=stx gDNA (-) 

control, 3=ECOR60 (+) control, 4=E. coli K-12 (-) control, 5=II3A, 6=III3E, 7=IV3B, 8=IV3E†, 9=IV3I, 

10=IV3J, 11=IV3K, 12=IV3L, 13=IV3M, 14=V3B, 15=V3C, 16=V3G, 17=V3H, 18=V3I, 19=I9B-1, 20=I9C, 

21=IV9C, 22=V9J, 23=III13D†, 24=IV13D, and L=DNA ladder. The * indicates faint bands. The † indicates 

samples that originally had faint bands which disappeared when the annealing temperature was raised. 
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Year Collection Date 
Collection Sites   

2 (w) 3 (w) 9 (s) 13 (s) Totals 

2016 

I 
0 0 4 0 

31 
II 

2 2 2 1 

III 
6 5 5 4 

2017 
IV 

20 20 20 20 
151 

V 
5 9 32 25 

  Totals: 
33 36 63 50 182 

       
Table 1: Number of isolates collected from IDEXX trays as putative E. coli. Collection dates: I = May 25, 

2016; II = June 29, 2016; III = July 26, 2016; IV = June 21, 2017; V = August 2, 2017; 

 w = water; s = sand 
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Year Collection Date 
Collection Sites   

2 (w) 3 (w) 9 (s) 13 (s) Totals 

2016 

I 
0 0 2 0 

27 
II 

2 2 2 0 

III 
6 5 5 3 

2017 
IV 

19 19 20 17 
146 

V 
5 9 32 25 

  Totals: 
32 35 61 45 173 

       
Table 2: Number of isolates collected from IDEXX trays biochemically identified as E. coli and selected to 

proceed in this study. Collection dates: I = May 25, 2016; II = June 29, 2016; III = July 26, 2016; IV = June 

21, 2017; V = August 2, 2017; w = water; s = sand 
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Appendix A: PCR primers used 

 

Gene of 
Interest 

Name Primer Sequence Citation Size of 
Amplicon 

(bp) 

16S rRNA 8F 5’-AGAGTTTGATCCTGGCTCAG-3’ (Eden et al. 1991) ~1500 
1492R(s) 5’-GGTTACCTTGTTACGACTT-3’ 

papC papC F-A 5’-GACGGCTGTACTGCAGGGTGTGGCG-3’ (Escobar-Paramo et al. 2004) ~328 
papC R 5’-ATATCCTTTCTGCAGGGATGCAATA-3’ 

sfa/foc sfa/foc F 5’-CTCCGGAGAACTGGGTGCATCTTAC-3’ (Escobar-Paramo et al. 2004, Zhi 
et al. 2016) 

~407 
sfa/foc R 5’-CGGAGGAGTAATTACAAACCTGGCA-3’ 

stx1 stx1 F-A 5’-CATCGCGAGTTGCCAGAAT-3’ (Escobar-Paramo et al. 2004) ~130 
stx1 R-A 5’-GCGTAATCCCACGGACTCTTC-3’ 

stx2 stx2 F-B 5’-CCGGAATGCAAATCAGTC-3’ (Zhi et al. 2016) ~113 
stx2 R-B 5’-CAGTGACAAAACGCAGAACT-3’ 
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Appendix B: PCR conditions 

 

  16S rRNA papC and sfa/foc stx1 and stx2 

Step Time Temperature (°C) 

Initial denaturation 3 min 95 94 94 

Denaturation 45 sec 95 94 94 

Annealing 60 sec 50 63/65* 58 

Elongation 60sec 72 72 72 

Number of cycles  29 repeats to Denaturation step (30 total cycles) 

Final elongation 10 min 72 72 72 

Hold ∞ 4 4 4 
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Appendix C: R code used for alignment and comparisons 

All code used was modified from that in the msa alignment add-on package 

for R (Bodenhofer et al. 2015) 

 

For entire 16S rDNA alignments of all 172 sequenced organisms:  

## Analyzing entire 16S gDNA Alignments for all 172 samples ## 

## Read Packages ## 

library("msa") 

library("ape") 

library("seqinr") 

library("ggtree") 

## Point to data ## 

SequenceFile <- "<file path>"  ## File path of ALL fasta file sequences ## 

## Read data as DNA ## 

Sequences_FromFile <- readDNAStringSet(SequenceFile) 

## Create Alignment using ClustalOmega ## 

Alignment_ClustalOmega <- msa(Sequences_FromFile, "ClustalOmega") 

## Optional: To see the whole alignment ## 

print(Alignment_ClustalOmega, show="complete") 

## Making neighbor joining tree ## 

Aln_Omega <- msaConvert(Alignment_ClustalOmega, type="seqinr::alignment") 

## Make Distance Matrix (using library(seqinr))## 

dist_matrix <- dist.alignment(Aln_Omega, "identity") 

## Make Neighbor-joining Tree (using library(ape)) ## 

NJ_Tree <- nj(dist_matrix) 

## Basic Plot of NJ Tree ## 
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plot(NJ_Tree, main="16S rDNA alignment of all E. coli samples collected") 

##To read plot better## 

plot(unroot(NJ_Tree),lab4ut="axial",cex=0.35, main="16S rRNA Alignment of E. coli") 

##To expand output of tree## 

plot(unroot(NJ_Tree),no.margin=TRUE,lab4ut="axial",cex=0.3) 

##To number the nodes to expand a certain area of the tree## 

ggtree(NJ_Tree,branch.length="none")+geom_text2(aes(label=node))+geom_tiplab() 

##To zoom in on specific nodes/branches## 

p=ggtree(NJ_Tree) 

viewClade(p+geom_tiplab(),node=**) ##Where ** is specific node chosen to zoom in on## 

 

For analyzing V1 and V2 of all 172 sequenced organisms: 

## Analyzing V1 and V2 regions of 16S gDNA Alignments for all 172 samples ## 

## Read Packages ## 

library("msa") 

library("ape") 

library("seqinr") 

library("ggtree") 

## Point to data ## 

SequenceFile <- "<file path>"  ##File path of ALL fasta file sequences ## 

## Read data as DNA ## 

Sequences_FromFile <- readDNAStringSet(SequenceFile) 

## Create Alignment using ClustalOmega ## 

Alignment_ClustalOmega <- msa(Sequences_FromFile, "ClustalOmega") 

## Optional: To see the whole alignment ## 

print(Alignment_ClustalOmega, show="complete") 

## Making neighbor joining tree ## 
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Aln_Omega <- msaConvert(Alignment_ClustalOmega, type="seqinr::alignment") 

##Specific Variable region (here is specific for v1) alignment## 

##V2 region is from 137 to 242## 

final=list() 

for(i in 1:length(Aln_Omega$seq)){ 

  sequences=Aln_Omega$seq[i] 

  sequences=unlist(strsplit(sequences,'')) 

  sequences=sequences[69:99] 

  final[i]=print(paste(sequences,collapse=''))} 

finalAlign_V1=as.alignment(nb=Aln_Omega$nb,nam=Aln_Omega$nam,seq=final,com=Aln_Omega$com) 

## Make Distance Matrix (using library(seqinr))## 

dist_matrix_v1 <- dist.alignment(finalAlign_V1, "identity") 

## Make Neighbor-joining Tree (using library(ape)) ## 

NJ_Tree_v1 <- nj(dist_matrix_v1) 

## Basic Plot of NJ Tree ## 

plot(NJ_Tree_v1, main="V1 alignment of all E. coli samples collected") 

##To read plot better## 

plot(unroot(NJ_Tree_v1),lab4ut="axial",cex=0.35, main="V1 Alignment of E. coli") 

##To expand output of tree## 

plot(unroot(NJ_Tree_v1),no.margin=TRUE,lab4ut="axial",cex=0.3) 

##To number the nodes to expand a certain area of the tree## 

ggtree(NJ_Tree_v1,branch.length="none")+geom_text2(aes(label=node))+geom_tiplab() 

##To zoom in on specific nodes/branches## 

p=ggtree(NJ_Tree_v1) 

viewClade(p+geom_tiplab(),node=**) ##Where ** is specific node chosen to zoom in on## 
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The above code is for V1 region only.  For V2 region, the base pairs to compare after 

alignment are 137 to 242.  Change the “V1” portion of the commands as needed in 

order to differentiate the different variable regions being compared. 

 

For analyzing V3 and V6 regions of 16S rDNA (113 samples): 

Because some sequences did not reach over 960bp, and because of the strict 

parameters for the Muscle alignment protocol, I removed those sequences (n=65) that 

were less than 960bp from this alignment protocol.  

## Analyzing V3 and V6 regions of 16S gDNA Alignments for 110 samples (ones over 960bp in length) ## 

## Read Packages ## 

library("msa") 

library("ape") 

library("seqinr") 

library("ggtree") 

## Point to data ## 

SequenceFile_960 <- "<file path>"## File path of fasta file sequences over 960bp ## 

## Read data as DNA ## 

Sequences_FromFile_960 <- readDNAStringSet(SequenceFile_960) 

## Create Alignment using Muscle for more stringent alignment ## 

Alignment_Muscle <- msa(Sequences_FromFile_960, "Muscle") 

## Optional: To see the whole alignment ## 

print(Alignment_Muscle, show="complete") 

## Making neighbor joining tree ## 

Aln_Muscle <- msaConvert(Alignment_Muscle, type="seqinr::alignment") 

##Specific Variable region (here is specific for v6) alignment## 

##V3 region is from 433 to 497## 

final=list() 
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for(i in 1:length(Aln_Muscle$seq)){ 

  sequences=Aln_Muscle$seq[i] 

  sequences=unlist(strsplit(sequences,'')) 

  sequences=sequences[986:1043] 

  final[i]=print(paste(sequences,collapse=''))} 

finalAlign_v6=as.alignment(nb=Aln_Muscle$nb,nam=Aln_Muscle$nam,seq=final,com=Aln_Muscle$com) 

## Make Distance Matrix (using library(seqinr))## 

dist_matrix_v6 <- dist.alignment(finalAlign_v6, "identity") 

## Make Neighbor-joining Tree (using library(ape)) ## 

NJ_Tree_v6 <- nj(dist_matrix_v6) 

## Basic Plot of NJ Tree ## 

plot(NJ_Tree_v6, main="V6 alignment of E. coli samples collected over 960bp") 

##To read plot better## 

plot(unroot(NJ_Tree_v6),lab4ut="axial",cex=0.35, main="V6 Alignment of E. coli") 

##To expand output of tree## 

plot(unroot(NJ_Tree_v6),no.margin=TRUE,lab4ut="axial",cex=0.3) 

##To number the nodes to expand a certain area of the tree## 

ggtree(NJ_Tree_v6,branch.length="none")+geom_text2(aes(label=node))+geom_tiplab() 

##To zoom in on specific nodes/branches## 

p=ggtree(NJ_Tree_v6) 

viewClade(p+geom_tiplab(),node=**) ##Where ** is specific node chosen to zoom in on## 

##msa Pretty Print## 

msaPrettyPrint(Alignment_Muscle, output=c("asis"), subset=c(1:20), y=c(986, 1043), showNames = 

"none", showLogo = "top", logoColors = "rasmol", shadingMode = "identical", showLegend = FALSE, 

askForOverwrite = FALSE)  ## Creates command line code for LaTeX in TeXStudio ## 

msaPrettyPrint(Alignment_Muscle, output=c("pdf"), subset=c(1:20), y=c(986, 1043), showNames = 

"none", showLogo = "top", logoColors = "rasmol", shadingMode = "identical", showLegend = FALSE, 

askForOverwrite = FALSE)  ##automatically generates pdf file of alignment## 
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The above code is for V6 region only.  For V3 region, the base pairs to compare after 

alignment are 433 to 497.  Change the “V6” portion of the commands as needed in 

order to differentiate the different variable regions being compared.  In the 

“msaPrettyPrint” code line, the subset variables may be changed to include as many as 

you would like to compare.  The “y” variables may also be changed to select a different 

region to compare. 

 

For analyzing V1 to V6 regions of 16S rDNA (113 samples): 

## Analyzing V1 to V6 regions of 16S gDNA Alignments for 110 samples (ones over 960bp in length) ## 

## Read Packages ## 

library("msa") 

library("ape") 

library("seqinr") 

library("ggtree") 

## Point to data ## 

SequenceFile_960 <- "<file path>" ##File path of fasta file sequences over 960bp ## 

## Read data as DNA ## 

Sequences_FromFile_960 <- readDNAStringSet(SequenceFile_960) 

## Create Alignment using Muscle for more stringent alignment ## 

Alignment_Muscle <- msa(Sequences_FromFile_960, "Muscle") 

## Optional: To see the whole alignment ## 

print(Alignment_Muscle, show="complete") 

## Making neighbor joining tree ## 

Aln_Muscle <- msaConvert(Alignment_Muscle, type="seqinr::alignment") 

##Specific Variable region (here is specific for V1 to V6) alignment## 

final=list() 

for(i in 1:length(Aln_Muscle$seq)){ 

  sequences=Aln_Muscle$seq[i] 
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  sequences=unlist(strsplit(sequences,'')) 

  sequences=sequences[69:1043] 

  final[i]=print(paste(sequences,collapse=''))} 

finalAlign_v1to6=as.alignment(nb=Aln_Muscle$nb,nam=Aln_Muscle$nam,seq=final,com=Aln_Muscle$co

m) 

## Make Distance Matrix (using library(seqinr))## 

dist_matrix_v1to6 <- dist.alignment(finalAlign_v1to6, "identity") 

## Make Neighbor-joining Tree (using library(ape)) ## 

NJ_Tree_v1to6 <- nj(dist_matrix_v1to6) 

## Basic Plot of NJ Tree ## 

plot(NJ_Tree_v1to6, main="V1 to V6 alignment of E. coli samples collected over 960bp") 

##To read plot better## 

plot(unroot(NJ_Tree_v1to6),lab4ut="axial",cex=0.35, main="V1 to V6 Alignment of E. coli") 

##To expand output of tree## 

plot(unroot(NJ_Tree_v1to6),no.margin=TRUE,lab4ut="axial",cex=0.3) 

##To number the nodes to expand a certain area of the tree## 

ggtree(NJ_Tree_v1to6,branch.length="none")+geom_text2(aes(label=node))+geom_tiplab() 

##To zoom in on specific nodes/branches## 

p=ggtree(NJ_Tree_v1to6) 

viewClade(p+geom_tiplab(),node=**)  ##Where ** is specific node chosen to zoom in on## 

##msa Pretty Print## 

msaPrettyPrint(Alignment_Muscle, output=c("asis"), subset=c(1:20), y=c(900, 1043), showNames = 

"none", showLogo = "top", logoColors = "rasmol", shadingMode = "identical", showLegend = FALSE, 

askForOverwrite = FALSE) )  ## Creates command line code for LaTeX in TeXStudio ## 

msaPrettyPrint(Alignment_Muscle, output=c("pdf"), subset=c(1:20), y=c(900, 1043), showNames = 

"none", showLogo = "top", logoColors = "rasmol", shadingMode = "identical", showLegend = FALSE, 

askForOverwrite = FALSE) ##automatically generates pdf file of alignment## 
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In the “msaPrettyPrint” code line, the subset variables may be changed to include as 

many as you would like to compare.  The “y” variables may also be changed to select a 

different region to compare.
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Appendix D: Data collected per sample date 

Sample Date 
Air Temperature 

(°C) 
Water 

Temperature (°C) 
No. Waterfowl 

No. 
People 

Precipitation 
within previous 3 

days 

Precipitation 
within previous 7 

days 

5/25/2016 18 17 21 10 No No 

6/29/2016 21 21 45 9 No Yes 

7/26/2016 24 25 20 11 Yes  

6/21/2017 18 21 1 0 Yes  

8/2/2017 28 24 50 10 Yes  

Average: 21.8 21.6 27.4 8   
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Appendix E: Phylogenetic trees created using R Studio

 

1. Complete 16S rDNA gene sequence analysis of all 178 samples using the ClustalOmega multiple sequence 

alignment parameters. 

U3309DI260-11 IV2D 8F
U3309DI260-121 V9BB 8F

U3309DI260-101 V9H 8F
U3309DI260-102 V9I 8F

U3309DI260-100 V9G 8F

U3309DI260-115 V9V 8F
U3309DI260-116 V9W 8F

U3309DI260-22 IV2O 8F
U3309DI260-114 V9U 8F

U3309DI260-110 V9Q 8F

U3309DI260-158 V13N 8F
U3309DI260-5 III2D 8F

U1935DF110-3 I9B 8F

U3309DI260-122 V9CC 8F

U3309DI260-98 V9E 8F
U3309DI260-125 V9FF 8F

U3309DI260-41 IV3E 8F

U3309DI260-47 IV3K 8F

U3309DI260-4 III2C 8F

U3309DI260-12 IV2E 8F

U3309DI260-7 III2F 8F

U3309DI260-152 V13H 8F

U3309DI260-120 V9AA 8F

U3309DI260-54 IV3R 8F

U3309DI260-150 V13F 8F

U3309DI260-148 V13D 8F

U3309DI260-71 III9C 8F

U3309DI260-153 V13I 8F

U3309DI260-138 IV13M 8F

U3309DI260-151 V13G 8F
U3309DI260-61 V3E 8F

U3309DI260-67 II9A 8F

U3309DI260-26 IV2S 8F

U3309DI260-55 IV3S 8F

U3309DI260-74 IV9A 8F

U3309DI260-9 IV2B 8F
U3309DI260-143 IV13R 8F

U3309DI260-60 V3D 8F

U3309DI260-111 V9R 8F

U3309DI260-133 IV13G 8F
U3309DI260-28 V2B 8F

U3309DI260-73 III9E 8F

U3309DI260-134 IV13H 8F

U3309DI260-16 IV2I 8F
U3309DI260-69 III9A 8F

U3309DI260-34 III3A-2 8F
U3309DI260-25 IV2R 8F

U3309DI260-1 II2B 8F
U3309DI260-58 V3B 8F

U3309DI260-65 V3I 8F

U3309DI260-66 I9C 8F

U3309DI260-112 V9S 8F
U3309DI260-130 IV13D 8F

U3309DI260-113 V9T 8F
U3309DI260-123 V9DD 8F

U3309DI260-126 III13D 8F
U3309DI260-118 V9Y 8F

U3309DI260-70 III9B 8F

U3309DI260-64 V3H 8F

U3309DI260-20 IV2M 8F
U3309DI260-50 IV3N 8F

U3309DI260-63 V3G 8F

U3309DI260-136 IV13J 8F

U3309DI260-51 IV3O 8F
U3309DI260-159 V13O 8F

U3309DI260-127 III13F 8F
U3309DI260-105 V9L 8F

U3309DI260-43 IV3G 8F
U3309DI260-8 IV2A 8F

U3309DI260-59 V3C 8F

U3309DI260-131 IV13E 8F

U3309DI260-156 V13L 8F

U3309DI260-17 IV2J 8F
U3309DI260-157 V13M 8F

U3309DI260-46 IV3J 8F
U3309DI260-135 IV13I 8F

U3309DI260-107 V9N 8F
U3309DI260-56 IV3T 8F

U3309DI260-109 V9P 8F

U3309DI260-18 IV2K 8F

U3309DI260-42 IV3F 8F

U3309DI260-13 IV2F 8F
U3309DI260-38 IV3B 8F

U3309DI260-3 III2B 8F
U3309DI260-129 IV13C 8F

U3309DI260-72 III9D 8F

U3309DI260-19 IV2L 8F

U3309DI260-163 V13S 8F
U3309DI260-147 V13C 8F

U3309DI260-97 V9D 8F
U3309DI260-161 V13Q 8F

U3309DI260-164 V13T 8F

U3309DI260-14 IV2G 8F
U3309DI260-24 IV2Q 8F

U3309DI260-32 II3B 8F
U3309DI260-117 V9X 8F

U3309DI260-124 V9EE 8F

U3309DI260-141 IV13P 8F

U3309DI260-23 IV2P 8F

U3309DI260-68 II9C 8F

U3309DI260-104 V9K 8F

U3309DI260-37 III3F 8F
U3309DI260-169 V13Y 8F

U3309DI260-89 IV9P 8F

U3309DI260-146 V13B 8F

U3309DI260-80 IV9G 8F
U3309DI260-149 V13E 8F

U3309DI260-48 IV3L 8F

U3309DI260-88 IV9O 8F

U3309DI260-132 IV13F 8F

U3309DI260-128 IV13B 8F

U3309DI260-76 IV9C 8F

U3309DI260-62 V3F 8F
U3309DI260-91 IV9R 8F

U3309DI260-140 IV13O 8F

U3309DI260-103 V9J 8F

U3309DI260-142 IV13Q 8F

U3309DI260-35 III3B 8F

U3309DI260-94 V9A 8F

U3309DI260-81 IV9H 8F

U3309DI260-155 V13K 8F

U1935DF110-4 III13B 8F

U3309DI260-30 V2D 8F

U3309DI260-154 V13J 8F
U3309DI260-168 V13X 8F

U3309DI260-49 IV3M 8F

U3309DI260-137 IV13K 8F
U3309DI260-31 V2E 8F

U3309DI260-83 IV9J 8F

U3309DI260-53 IV3Q 8F

U1935DF110-1 II2A 8F

U3309DI260-99 V9F 8F

U3309DI260-52 IV3P 8F

ENA|AR657803|AR657803.1 Sequence 33 from patent US 6894156. 

NR 024570.1 Escherichia coli strain U 5/41 16S ribosomal RNA gene, partial sequence
MH782105.1 Escherichia sp. strain 3BT 16S ribosomal RNA gene, partial sequence

U3309DI260-95 V9B 8F

U3309DI260-106 V9M 8F

U1935DF110-2 II3A 8F

U3309DI260-108 V9O 8F

U3309DI260-171 ECOR60 8F

U3309DI260-45 IV3I 8F
U3309DI260-90 IV9Q 8F

U3309DI260-6 III2E 8F

U3309DI260-145 V13A 8F
U3309DI260-27 V2A 8F

U3309DI260-39 IV3C 8F
U3309DI260-144 IV13S 8F

U3309DI260-119 V9Z 8F
U3309DI260-44 IV3H 8F

U3309DI260-40 IV3D 8F

U3309DI260-21 IV2N 8F

U3309DI260-2 III2A 8F
U3309DI260-15 IV2H 8F

U3309DI260-10 IV2C 8F

U3309DI260-167 V13W 8F

U3309DI260-85 IV9L 8F

U3309DI260-75 IV9B 8F

U3309DI260-77 IV9D 8F
U3309DI260-79 IV9F 8F

U3309DI260-96 V9C 8F

U3309DI260-162 V13R 8F
U3309DI260-87 IV9N 8F

U3309DI260-82 IV9I 8F

U3309DI260-57 V3A 8F

U3309DI260-86 IV9M 8F
U3309DI260-93 IV9T 8F

U3309DI260-29 V2C 8F

U3309DI260-170 EcoliK12 8F
U3309DI260-165 V13U 8F

U3309DI260-78 IV9E 8F

U3309DI260-36 III3E 8F
U3309DI260-166 V13V 8F

U3309DI260-33 III3A-1 8F
U3309DI260-160 V13P 8F
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2. Variable region 1 sequence analysis of all 178 samples using the ClustalOmega multiple sequence 

alignment parameters. After sequences were aligned, base pairs 69 to 99 were parsed out and this tree was 

generated.  

U3309DI260-11 IV2D 8F

U3309DI260-121 V9BB 8F
U3309DI260-101 V9H 8F

U3309DI260-102 V9I 8F

U3309DI260-100 V9G 8F
U3309DI260-115 V9V 8F
U3309DI260-116 V9W 8F

U3309DI260-22 IV2O 8F

U3309DI260-114 V9U 8F

U3309DI260-110 V9Q 8F

U3309DI260-158 V13N 8F

U3309DI260-5 III2D 8F

U1935DF110-3 I9B 8F

U3309DI260-122 V9CC 8F

U3309DI260-98 V9E 8F
U3309DI260-125 V9FF 8F

U3309DI260-41 IV3E 8F
U3309DI260-47 IV3K 8F

U3309DI260-4 III2C 8F

U3309DI260-12 IV2E 8F

U3309DI260-7 III2F 8F

U3309DI260-152 V13H 8F

U3309DI260-120 V9AA 8F

U3309DI260-54 IV3R 8F
U3309DI260-150 V13F 8F

U3309DI260-148 V13D 8F

U3309DI260-71 III9C 8F

U3309DI260-153 V13I 8F

U3309DI260-138 IV13M 8F

U3309DI260-151 V13G 8F
U3309DI260-61 V3E 8F
U3309DI260-67 II9A 8F
U3309DI260-26 IV2S 8F
U3309DI260-55 IV3S 8F
U3309DI260-74 IV9A 8F

U3309DI260-9 IV2B 8F

U3309DI260-143 IV13R 8F

U3309DI260-60 V3D 8F

U3309DI260-111 V9R 8F

U3309DI260-133 IV13G 8F
U3309DI260-28 V2B 8F

U3309DI260-73 III9E 8F

U3309DI260-134 IV13H 8F

U3309DI260-16 IV2I 8F

U3309DI260-69 III9A 8F

U3309DI260-34 III3A-2 8F

U3309DI260-25 IV2R 8F

U3309DI260-1 II2B 8F

U3309DI260-58 V3B 8F
U3309DI260-65 V3I 8F

U3309DI260-66 I9C 8F

U3309DI260-112 V9S 8F

U3309DI260-130 IV13D 8F

U3309DI260-113 V9T 8F
U3309DI260-123 V9DD 8F

U3309DI260-126 III13D 8F

U3309DI260-118 V9Y 8F

U3309DI260-70 III9B 8F

U3309DI260-64 V3H 8F

U3309DI260-20 IV2M 8F

U3309DI260-50 IV3N 8F
U3309DI260-63 V3G 8F

U3309DI260-136 IV13J 8F

U3309DI260-51 IV3O 8F
U3309DI260-159 V13O 8F

U3309DI260-127 III13F 8F

U3309DI260-105 V9L 8F

U3309DI260-43 IV3G 8F

U3309DI260-8 IV2A 8F
U3309DI260-59 V3C 8F

U3309DI260-131 IV13E 8F

U3309DI260-156 V13L 8F

U3309DI260-17 IV2J 8F

U3309DI260-157 V13M 8F
U3309DI260-46 IV3J 8F

U3309DI260-135 IV13I 8F

U3309DI260-107 V9N 8F

U3309DI260-56 IV3T 8F

U3309DI260-109 V9P 8F

U3309DI260-18 IV2K 8F

U3309DI260-42 IV3F 8F

U3309DI260-13 IV2F 8F

U3309DI260-38 IV3B 8F

U3309DI260-3 III2B 8F

U3309DI260-129 IV13C 8F

U3309DI260-72 III9D 8F

U3309DI260-19 IV2L 8F

U3309DI260-163 V13S 8F
U3309DI260-147 V13C 8F
U3309DI260-97 V9D 8F
U3309DI260-161 V13Q 8F

U3309DI260-164 V13T 8F

U3309DI260-14 IV2G 8F

U3309DI260-24 IV2Q 8F

U3309DI260-32 II3B 8F
U3309DI260-117 V9X 8F

U3309DI260-124 V9EE 8F
U3309DI260-141 IV13P 8F
U3309DI260-23 IV2P 8F

U3309DI260-68 II9C 8F

U3309DI260-104 V9K 8F

U3309DI260-37 III3F 8F
U3309DI260-169 V13Y 8F

U3309DI260-89 IV9P 8F
U3309DI260-146 V13B 8F

U3309DI260-80 IV9G 8F

U3309DI260-149 V13E 8F

U3309DI260-48 IV3L 8F

U3309DI260-88 IV9O 8F

U3309DI260-132 IV13F 8F

U3309DI260-128 IV13B 8F

U3309DI260-76 IV9C 8F

U3309DI260-62 V3F 8F

U3309DI260-91 IV9R 8F
U3309DI260-140 IV13O 8F

U3309DI260-103 V9J 8F

U3309DI260-142 IV13Q 8F

U3309DI260-35 III3B 8F

U3309DI260-94 V9A 8F
U3309DI260-81 IV9H 8F
U3309DI260-155 V13K 8F

U1935DF110-4 III13B 8F

U3309DI260-30 V2D 8F
U3309DI260-154 V13J 8F
U3309DI260-168 V13X 8F
U3309DI260-49 IV3M 8F
U3309DI260-137 IV13K 8F

U3309DI260-31 V2E 8F

U3309DI260-83 IV9J 8F

U3309DI260-53 IV3Q 8F

U1935DF110-1 II2A 8F

U3309DI260-99 V9F 8F

U3309DI260-52 IV3P 8F

ENA|AR657803|AR657803.1 Sequence 33 from patent US 6894156. 

NR 024570.1 Escherichia coli strain U 5/41 16S ribosomal RNA gene, partial sequence
MH782105.1 Escherichia sp. strain 3BT 16S ribosomal RNA gene, partial sequence

U3309DI260-95 V9B 8F

U3309DI260-106 V9M 8F

U1935DF110-2 II3A 8F

U3309DI260-108 V9O 8F

U3309DI260-171 ECOR60 8F
U3309DI260-45 IV3I 8F

U3309DI260-90 IV9Q 8F

U3309DI260-6 III2E 8F

U3309DI260-145 V13A 8F

U3309DI260-27 V2A 8F

U3309DI260-39 IV3C 8F
U3309DI260-144 IV13S 8F
U3309DI260-119 V9Z 8F
U3309DI260-44 IV3H 8F
U3309DI260-40 IV3D 8F

U3309DI260-21 IV2N 8F

U3309DI260-2 III2A 8F

U3309DI260-15 IV2H 8F

U3309DI260-10 IV2C 8F

U3309DI260-167 V13W 8F

U3309DI260-85 IV9L 8F

U3309DI260-75 IV9B 8F

U3309DI260-77 IV9D 8F

U3309DI260-79 IV9F 8F

U3309DI260-96 V9C 8F

U3309DI260-162 V13R 8F
U3309DI260-87 IV9N 8F

U3309DI260-82 IV9I 8F
U3309DI260-57 V3A 8F

U3309DI260-86 IV9M 8F

U3309DI260-93 IV9T 8F
U3309DI260-29 V2C 8F

U3309DI260-170 EcoliK12 8F

U3309DI260-165 V13U 8F

U3309DI260-78 IV9E 8F

U3309DI260-36 III3E 8F

U3309DI260-166 V13V 8F

U3309DI260-33 III3A-1 8F
U3309DI260-160 V13P 8F
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3. Variable region 2 sequence analysis of all 178 samples using the ClustalOmega multiple sequence 

alignment parameters. After sequences were aligned, base pairs 137 to 242 were parsed out and this tree 

was generated. 

U3309DI260-11 IV2D 8F

U3309DI260-121 V9BB 8F

U3309DI260-101 V9H 8F

U3309DI260-102 V9I 8F
U3309DI260-100 V9G 8F
U3309DI260-115 V9V 8F
U3309DI260-116 V9W 8F

U3309DI260-22 IV2O 8F

U3309DI260-114 V9U 8F
U3309DI260-110 V9Q 8F
U3309DI260-158 V13N 8F
U3309DI260-5 III2D 8F

U1935DF110-3 I9B 8F

U3309DI260-122 V9CC 8F
U3309DI260-98 V9E 8F
U3309DI260-125 V9FF 8F
U3309DI260-41 IV3E 8F
U3309DI260-47 IV3K 8F
U3309DI260-4 III2C 8F
U3309DI260-12 IV2E 8F
U3309DI260-7 III2F 8F
U3309DI260-152 V13H 8F
U3309DI260-120 V9AA 8F
U3309DI260-54 IV3R 8F
U3309DI260-150 V13F 8F
U3309DI260-148 V13D 8F
U3309DI260-71 III9C 8F
U3309DI260-153 V13I 8F
U3309DI260-138 IV13M 8F
U3309DI260-151 V13G 8F
U3309DI260-61 V3E 8F
U3309DI260-67 II9A 8F
U3309DI260-26 IV2S 8F
U3309DI260-55 IV3S 8F
U3309DI260-74 IV9A 8F
U3309DI260-9 IV2B 8F
U3309DI260-143 IV13R 8F

U3309DI260-60 V3D 8F

U3309DI260-111 V9R 8F

U3309DI260-133 IV13G 8F
U3309DI260-28 V2B 8F
U3309DI260-73 III9E 8F
U3309DI260-134 IV13H 8F
U3309DI260-16 IV2I 8F
U3309DI260-69 III9A 8F
U3309DI260-34 III3A-2 8F
U3309DI260-25 IV2R 8F
U3309DI260-1 II2B 8F
U3309DI260-58 V3B 8F
U3309DI260-65 V3I 8F
U3309DI260-66 I9C 8F
U3309DI260-72 III9D 8F
U3309DI260-19 IV2L 8F
U3309DI260-163 V13S 8F
U3309DI260-147 V13C 8F
U3309DI260-97 V9D 8F
U3309DI260-161 V13Q 8F
U3309DI260-164 V13T 8F
U3309DI260-14 IV2G 8F
U3309DI260-24 IV2Q 8F
U3309DI260-32 II3B 8F
U3309DI260-117 V9X 8F
U3309DI260-124 V9EE 8F
U3309DI260-141 IV13P 8F
U3309DI260-23 IV2P 8F
U3309DI260-68 II9C 8F
U3309DI260-104 V9K 8F

U3309DI260-37 III3F 8F
U3309DI260-169 V13Y 8F

U3309DI260-89 IV9P 8F

U3309DI260-146 V13B 8F

U3309DI260-80 IV9G 8F
U3309DI260-149 V13E 8F
U3309DI260-48 IV3L 8F

U3309DI260-88 IV9O 8F
U3309DI260-132 IV13F 8F

U3309DI260-128 IV13B 8F

U3309DI260-76 IV9C 8F
U3309DI260-62 V3F 8F

U3309DI260-91 IV9R 8F
U3309DI260-140 IV13O 8F
U3309DI260-103 V9J 8F

U3309DI260-142 IV13Q 8F

U3309DI260-35 III3B 8F

U3309DI260-94 V9A 8F
U3309DI260-81 IV9H 8F
U3309DI260-155 V13K 8F

U1935DF110-4 III13B 8F

U3309DI260-30 V2D 8F

U3309DI260-154 V13J 8F
U3309DI260-168 V13X 8F
U3309DI260-49 IV3M 8F
U3309DI260-137 IV13K 8F

U3309DI260-31 V2E 8F
U3309DI260-83 IV9J 8F

U3309DI260-53 IV3Q 8F
U1935DF110-1 II2A 8F
U3309DI260-99 V9F 8F
U3309DI260-52 IV3P 8F
ENA|AR657803|AR657803.1 Sequence 33 from patent US 6894156. 

NR 024570.1 Escherichia coli strain U 5/41 16S ribosomal RNA gene, partial sequence
MH782105.1 Escherichia sp. strain 3BT 16S ribosomal RNA gene, partial sequence

U3309DI260-95 V9B 8F
U3309DI260-106 V9M 8F
U1935DF110-2 II3A 8F
U3309DI260-108 V9O 8F
U3309DI260-171 ECOR60 8F
U3309DI260-45 IV3I 8F

U3309DI260-90 IV9Q 8F

U3309DI260-6 III2E 8F
U3309DI260-145 V13A 8F
U3309DI260-27 V2A 8F

U3309DI260-39 IV3C 8F
U3309DI260-144 IV13S 8F
U3309DI260-119 V9Z 8F
U3309DI260-44 IV3H 8F
U3309DI260-40 IV3D 8F
U3309DI260-21 IV2N 8F
U3309DI260-2 III2A 8F
U3309DI260-15 IV2H 8F

U3309DI260-10 IV2C 8F
U3309DI260-167 V13W 8F

U3309DI260-85 IV9L 8F

U3309DI260-75 IV9B 8F

U3309DI260-77 IV9D 8F

U3309DI260-79 IV9F 8F

U3309DI260-96 V9C 8F

U3309DI260-162 V13R 8F
U3309DI260-87 IV9N 8F

U3309DI260-82 IV9I 8F
U3309DI260-57 V3A 8F

U3309DI260-86 IV9M 8F

U3309DI260-93 IV9T 8F
U3309DI260-29 V2C 8F

U3309DI260-170 EcoliK12 8F
U3309DI260-165 V13U 8F
U3309DI260-78 IV9E 8F

U3309DI260-36 III3E 8F

U3309DI260-166 V13V 8F
U3309DI260-33 III3A-1 8F
U3309DI260-160 V13P 8F
U3309DI260-112 V9S 8F
U3309DI260-130 IV13D 8F
U3309DI260-113 V9T 8F

U3309DI260-123 V9DD 8F

U3309DI260-126 III13D 8F
U3309DI260-118 V9Y 8F
U3309DI260-70 III9B 8F
U3309DI260-64 V3H 8F
U3309DI260-20 IV2M 8F
U3309DI260-50 IV3N 8F
U3309DI260-63 V3G 8F
U3309DI260-136 IV13J 8F
U3309DI260-51 IV3O 8F

U3309DI260-159 V13O 8F

U3309DI260-127 III13F 8F

U3309DI260-105 V9L 8F
U3309DI260-43 IV3G 8F

U3309DI260-8 IV2A 8F

U3309DI260-59 V3C 8F
U3309DI260-131 IV13E 8F

U3309DI260-156 V13L 8F

U3309DI260-17 IV2J 8F
U3309DI260-157 V13M 8F
U3309DI260-46 IV3J 8F
U3309DI260-135 IV13I 8F
U3309DI260-107 V9N 8F
U3309DI260-56 IV3T 8F
U3309DI260-109 V9P 8F
U3309DI260-18 IV2K 8F
U3309DI260-42 IV3F 8F
U3309DI260-13 IV2F 8F
U3309DI260-38 IV3B 8F

U3309DI260-3 III2B 8F
U3309DI260-129 IV13C 8F
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4. Variable region 3 sequence analysis of 113 samples using the Muscle multiple sequence alignment 

parameters. After sequences were aligned, base pairs 433 to 497 were parsed out and this tree was 

generated. 

U3309DI260-122 V9CC 8F

U3309DI260-98 V9E 8F
U3309DI260-100 V9G 8F

U3309DI260-151 V13G 8F
U3309DI260-80 IV9G 8F
U1935DF110-4 III13B 8F
U3309DI260-155 V13K 8F
U3309DI260-140 IV13O 8F
U3309DI260-94 V9A 8F
U3309DI260-76 IV9C 8F
U3309DI260-39 IV3C 8F
U3309DI260-95 V9B 8F

U3309DI260-137 IV13K 8F
U3309DI260-40 IV3D 8F
U3309DI260-91 IV9R 8F
U3309DI260-132 IV13F 8F
U3309DI260-128 IV13B 8F
U3309DI260-11 IV2D 8F
U3309DI260-161 V13Q 8F
U3309DI260-12 IV2E 8F
U3309DI260-19 IV2L 8F

U3309DI260-27 V2A 8F
U3309DI260-24 IV2Q 8F
U3309DI260-97 V9D 8F
U3309DI260-163 V13S 8F
U3309DI260-69 III9A 8F
U3309DI260-14 IV2G 8F
U3309DI260-88 IV9O 8F
U3309DI260-119 V9Z 8F
U3309DI260-30 V2D 8F
U3309DI260-81 IV9H 8F

U3309DI260-44 IV3H 8F
U3309DI260-144 IV13S 8F
U3309DI260-83 IV9J 8F
U3309DI260-68 II9C 8F
U3309DI260-32 II3B 8F
U3309DI260-147 V13C 8F
U3309DI260-23 IV2P 8F
U3309DI260-96 V9C 8F
U3309DI260-48 IV3L 8F

U3309DI260-101 V9H 8F
U1935DF110-3 I9B 8F
U3309DI260-54 IV3R 8F
U3309DI260-104 V9K 8F
U3309DI260-103 V9J 8F
U3309DI260-82 IV9I 8F
U3309DI260-166 V13V 8F
U3309DI260-99 V9F 8F
U3309DI260-62 V3F 8F

U3309DI260-79 IV9F 8F
U3309DI260-168 V13X 8F
U3309DI260-167 V13W 8F
U3309DI260-165 V13U 8F
U3309DI260-106 V9M 8F
U3309DI260-2 III2A 8F
U3309DI260-141 IV13P 8F
U3309DI260-142 IV13Q 8F
U3309DI260-29 V2C 8F

U3309DI260-36 III3E 8F
U3309DI260-152 V13H 8F
NR 024570.1 Escherichia coli strain U 5/41 16S ribosomal RNA gene, partial sequence
MH782105.1 Escherichia sp. strain 3BT 16S ribosomal RNA gene, partial sequence
U3309DI260-77 IV9D 8F
U1935DF110-1 II2A 8F
U3309DI260-34 III3A-2 8F
U3309DI260-85 IV9L 8F
U3309DI260-75 IV9B 8F

U3309DI260-90 IV9Q 8F
U3309DI260-162 V13R 8F
U3309DI260-60 V3D 8F
U1935DF110-2 II3A 8F
ENA|AR657803|AR657803.1 Sequence 33 from patent US 6894156. 
U3309DI260-170 EcoliK12 8F
U3309DI260-154 V13J 8F
U3309DI260-87 IV9N 8F
U3309DI260-171 ECOR60 8F

U3309DI260-45 IV3I 8F
U3309DI260-108 V9O 8F
U3309DI260-49 IV3M 8F
U3309DI260-89 IV9P 8F
U3309DI260-35 III3B 8F
U3309DI260-22 IV2O 8F
U3309DI260-146 V13B 8F
U3309DI260-31 V2E 8F
U3309DI260-15 IV2H 8F
U3309DI260-21 IV2N 8F

U3309DI260-125 V9FF 8F
U3309DI260-120 V9AA 8F
U3309DI260-16 IV2I 8F
U3309DI260-10 IV2C 8F
U3309DI260-28 V2B 8F
U3309DI260-86 IV9M 8F
U3309DI260-26 IV2S 8F
U3309DI260-52 IV3P 8F
U3309DI260-134 IV13H 8F

U3309DI260-61 V3E 8F
U3309DI260-78 IV9E 8F
U3309DI260-149 V13E 8F
U3309DI260-133 IV13G 8F
U3309DI260-121 V9BB 8F
U3309DI260-160 V13P 8F
U3309DI260-158 V13N 8F
U3309DI260-164 V13T 8F
U3309DI260-33 III3A-1 8F

U3309DI260-117 V9X 8F
U3309DI260-67 II9A 8F
U3309DI260-72 III9D 8F

U3309DI260-153 V13I 8F

U3309DI260-53 IV3Q 8F
U3309DI260-169 V13Y 8F
U3309DI260-37 III3F 8F

U3309DI260-57 V3A 8F
U3309DI260-93 IV9T 8F
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5. Variable region 6 sequence analysis of 113 samples using the Muscle multiple sequence alignment 

parameters. After sequences were aligned, base pairs 986 to 1043 were parsed out and this tree was 

generated. 

U3309DI260-122 V9CC 8F

U3309DI260-98 V9E 8F

U3309DI260-100 V9G 8F

U3309DI260-151 V13G 8F
U3309DI260-80 IV9G 8F

U1935DF110-4 III13B 8F

U3309DI260-155 V13K 8F

U3309DI260-140 IV13O 8F

U3309DI260-94 V9A 8F

U3309DI260-76 IV9C 8F

U3309DI260-39 IV3C 8F

U3309DI260-95 V9B 8F

U3309DI260-137 IV13K 8F

U3309DI260-40 IV3D 8F

U3309DI260-91 IV9R 8F

U3309DI260-132 IV13F 8F

U3309DI260-128 IV13B 8F

U3309DI260-11 IV2D 8F

U3309DI260-161 V13Q 8F

U3309DI260-12 IV2E 8F

U3309DI260-19 IV2L 8F

U3309DI260-27 V2A 8F

U3309DI260-24 IV2Q 8F

U3309DI260-97 V9D 8F

U3309DI260-163 V13S 8F

U3309DI260-69 III9A 8F

U3309DI260-14 IV2G 8F

U3309DI260-88 IV9O 8F

U3309DI260-119 V9Z 8F

U3309DI260-30 V2D 8F

U3309DI260-81 IV9H 8F

U3309DI260-44 IV3H 8F

U3309DI260-144 IV13S 8F
U3309DI260-83 IV9J 8F

U3309DI260-68 II9C 8F

U3309DI260-32 II3B 8F

U3309DI260-147 V13C 8F

U3309DI260-23 IV2P 8F

U3309DI260-96 V9C 8F

U3309DI260-48 IV3L 8F

U3309DI260-101 V9H 8F
U1935DF110-3 I9B 8F

U3309DI260-54 IV3R 8F

U3309DI260-104 V9K 8F

U3309DI260-103 V9J 8F

U3309DI260-82 IV9I 8F

U3309DI260-166 V13V 8F

U3309DI260-99 V9F 8F

U3309DI260-62 V3F 8F

U3309DI260-79 IV9F 8F

U3309DI260-168 V13X 8F

U3309DI260-167 V13W 8F

U3309DI260-165 V13U 8F
U3309DI260-106 V9M 8F

U3309DI260-2 III2A 8F

U3309DI260-141 IV13P 8F

U3309DI260-142 IV13Q 8F
U3309DI260-29 V2C 8F
U3309DI260-36 III3E 8F

U3309DI260-152 V13H 8F

NR 024570.1 Escherichia coli strain U 5/41 16S ribosomal RNA gene, partial sequence

MH782105.1 Escherichia sp. strain 3BT 16S ribosomal RNA gene, partial sequence

U3309DI260-77 IV9D 8F

U1935DF110-1 II2A 8F

U3309DI260-34 III3A-2 8F

U3309DI260-85 IV9L 8F

U3309DI260-75 IV9B 8F

U3309DI260-90 IV9Q 8F
U3309DI260-162 V13R 8F

U3309DI260-60 V3D 8F

U1935DF110-2 II3A 8F

ENA|AR657803|AR657803.1 Sequence 33 from patent US 6894156. 
U3309DI260-170 EcoliK12 8F
U3309DI260-154 V13J 8F
U3309DI260-87 IV9N 8F
U3309DI260-171 ECOR60 8F
U3309DI260-45 IV3I 8F
U3309DI260-108 V9O 8F
U3309DI260-49 IV3M 8F

U3309DI260-89 IV9P 8F

U3309DI260-35 III3B 8F

U3309DI260-22 IV2O 8F

U3309DI260-146 V13B 8F

U3309DI260-31 V2E 8F

U3309DI260-15 IV2H 8F

U3309DI260-21 IV2N 8F

U3309DI260-125 V9FF 8F

U3309DI260-120 V9AA 8F

U3309DI260-16 IV2I 8F

U3309DI260-10 IV2C 8F
U3309DI260-28 V2B 8F

U3309DI260-86 IV9M 8F

U3309DI260-26 IV2S 8F

U3309DI260-52 IV3P 8F

U3309DI260-134 IV13H 8F

U3309DI260-61 V3E 8F

U3309DI260-78 IV9E 8F

U3309DI260-149 V13E 8F

U3309DI260-133 IV13G 8F

U3309DI260-121 V9BB 8F

U3309DI260-160 V13P 8F

U3309DI260-158 V13N 8F

U3309DI260-164 V13T 8F

U3309DI260-33 III3A-1 8F

U3309DI260-117 V9X 8F

U3309DI260-67 II9A 8F

U3309DI260-72 III9D 8F

U3309DI260-153 V13I 8F

U3309DI260-53 IV3Q 8F

U3309DI260-169 V13Y 8F

U3309DI260-37 III3F 8F

U3309DI260-57 V3A 8F

U3309DI260-93 IV9T 8F
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6. Sites 3 and 9 only (North side of beach, nt=60: n3=20, n9=40) analysis covering variable regions 1 through 

6 using Muscle multiple sequence alignment parameters. After sequences were aligned, base pairs 69 to 

1043 were parsed out and this tree was generated. 

U3309DI260-98 V9E 8F

U3309DI260-122 V9CC 8F

U3309DI260-120 V9AA 8F

U3309DI260-89 IV9P 8F

U3309DI260-39 IV3C 8F

U3309DI260-67 II9A 8F

U3309DI260-48 IV3L 8F

U3309DI260-88 IV9O 8F

U3309DI260-117 V9X 8F

U3309DI260-85 IV9L 8F

U3309DI260-32 II3B 8F

U3309DI260-119 V9Z 8F

U3309DI260-97 V9D 8F

U3309DI260-40 IV3D 8F

U3309DI260-76 IV9C 8F

U3309DI260-95 V9B 8F

U3309DI260-96 V9C 8F

U3309DI260-44 IV3H 8F

U3309DI260-83 IV9J 8F

U3309DI260-94 V9A 8F

U3309DI260-81 IV9H 8F

U3309DI260-103 V9J 8F

U3309DI260-82 IV9I 8F

U3309DI260-36 III3E 8F

U3309DI260-62 V3F 8F

U3309DI260-79 IV9F 8F

U3309DI260-125 V9FF 8F

U3309DI260-54 IV3R 8F

U3309DI260-72 III9D 8F

U3309DI260-101 V9H 8F

U3309DI260-35 III3B 8F

U3309DI260-100 V9G 8F

U3309DI260-104 V9K 8F

U1935DF110-3 I9B 8F

U3309DI260-69 III9A 8F

NR 024570.1 Escherichia coli strain U 5/41 16S ribosomal RNA gene, partial sequence

MH782105.1 Escherichia sp. strain 3BT 16S ribosomal RNA gene, partial sequence

U3309DI260-68 II9C 8F

U3309DI260-52 IV3P 8F

U3309DI260-37 III3F 8F

U3309DI260-93 IV9T 8F

U3309DI260-91 IV9R 8F

U3309DI260-57 V3A 8F

U3309DI260-86 IV9M 8F

U3309DI260-61 V3E 8F

U3309DI260-77 IV9D 8F

U3309DI260-53 IV3Q 8F

U3309DI260-80 IV9G 8F

U3309DI260-60 V3D 8F

U3309DI260-121 V9BB 8F

U3309DI260-78 IV9E 8F

U3309DI260-106 V9M 8F

U3309DI260-34 III3A-2 8F

U3309DI260-90 IV9Q 8F

U3309DI260-99 V9F 8F

U3309DI260-33 III3A-1 8F

U3309DI260-75 IV9B 8F

U1935DF110-2 II3A 8F

U3309DI260-170 EcoliK12 8F

ENA|AR657803|AR657803.1 Sequence 33 from patent US 6894156. 

U3309DI260-87 IV9N 8F

U3309DI260-171 ECOR60 8F

U3309DI260-45 IV3I 8F

U3309DI260-108 V9O 8F

U3309DI260-49 IV3M 8F
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7. Sites 2 and 13 only (South side of beach, nt=48: n2=19, n13=29) analysis covering variable regions 1 

through 6 using Muscle multiple sequence alignment parameters. After sequences were aligned, base pairs 

69 to 1043 were parsed out and this tree was generated. 

U3309DI260-134 IV13H 8F

U3309DI260-22 IV2O 8F

U1935DF110-4 III13B 8F

U3309DI260-146 V13B 8F

U3309DI260-137 IV13K 8F

U3309DI260-31 V2E 8F

U3309DI260-15 IV2H 8F

U3309DI260-21 IV2N 8F

U3309DI260-128 IV13B 8F

U3309DI260-151 V13G 8F

U3309DI260-23 IV2P 8F

U3309DI260-11 IV2D 8F

U3309DI260-147 V13C 8F

U3309DI260-14 IV2G 8F

U3309DI260-27 V2A 8F

U3309DI260-30 V2D 8F

U3309DI260-163 V13S 8F

U3309DI260-12 IV2E 8F

U3309DI260-161 V13Q 8F

U3309DI260-19 IV2L 8F

U3309DI260-24 IV2Q 8F

U3309DI260-16 IV2I 8F

U3309DI260-10 IV2C 8F

U3309DI260-158 V13N 8F

U3309DI260-166 V13V 8F

U3309DI260-168 V13X 8F

U3309DI260-167 V13W 8F

U3309DI260-165 V13U 8F

U3309DI260-133 IV13G 8F

U3309DI260-152 V13H 8F

U3309DI260-160 V13P 8F

U3309DI260-140 IV13O 8F

U3309DI260-169 V13Y 8F

U3309DI260-132 IV13F 8F

U3309DI260-29 V2C 8F

U3309DI260-144 IV13S 8F

U3309DI260-142 IV13Q 8F

U3309DI260-141 IV13P 8F

U3309DI260-2 III2A 8F

U3309DI260-171 ECOR60 8F

U3309DI260-154 V13J 8F

U3309DI260-28 V2B 8F

U3309DI260-153 V13I 8F

U3309DI260-26 IV2S 8F

NR 024570.1 Escherichia coli strain U 5/41 16S ribosomal RNA gene, partial sequence

MH782105.1 Escherichia sp. strain 3BT 16S ribosomal RNA gene, partial sequence

U3309DI260-155 V13K 8F

U1935DF110-1 II2A 8F

U3309DI260-149 V13E 8F

U3309DI260-162 V13R 8F

U3309DI260-164 V13T 8F

ENA|AR657803|AR657803.1 Sequence 33 from patent US 6894156. 

U3309DI260-170 EcoliK12 8F
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8. Sites 9 and 13 only (Sand isolates only, nt=69: n9=40, n13=29) analysis covering variable regions 1 through 

6 using Muscle multiple sequence alignment parameters. After sequences were aligned, base pairs 69 to 

1043 were parsed out and this tree was generated. 

 

U3309DI260-98 V9E 8F

U3309DI260-122 V9CC 8F

U3309DI260-69 III9A 8F

U3309DI260-128 IV13B 8F

U3309DI260-104 V9K 8F

U3309DI260-151 V13G 8F

U3309DI260-134 IV13H 8F

U3309DI260-89 IV9P 8F

U3309DI260-80 IV9G 8F

U1935DF110-4 III13B 8F

U3309DI260-100 V9G 8F

U3309DI260-146 V13B 8F

U3309DI260-76 IV9C 8F

U3309DI260-149 V13E 8F

U3309DI260-95 V9B 8F

U3309DI260-137 IV13K 8F

U3309DI260-161 V13Q 8F

U3309DI260-67 II9A 8F

U3309DI260-147 V13C 8F

U3309DI260-132 IV13F 8F

U3309DI260-90 IV9Q 8F

U3309DI260-93 IV9T 8F

U3309DI260-91 IV9R 8F

U3309DI260-169 V13Y 8F

U3309DI260-97 V9D 8F

U3309DI260-163 V13S 8F

U3309DI260-155 V13K 8F

U3309DI260-85 IV9L 8F

U3309DI260-140 IV13O 8F

U3309DI260-119 V9Z 8F

U3309DI260-96 V9C 8F

U3309DI260-88 IV9O 8F

U3309DI260-94 V9A 8F

U3309DI260-81 IV9H 8F

U3309DI260-83 IV9J 8F

U3309DI260-144 IV13S 8F

U3309DI260-125 V9FF 8F

U3309DI260-103 V9J 8F

U3309DI260-121 V9BB 8F

U3309DI260-99 V9F 8F

U3309DI260-141 IV13P 8F

U3309DI260-142 IV13Q 8F

U3309DI260-152 V13H 8F

U3309DI260-160 V13P 8F

U3309DI260-166 V13V 8F

U3309DI260-158 V13N 8F

U3309DI260-82 IV9I 8F

U3309DI260-79 IV9F 8F

U3309DI260-168 V13X 8F

U3309DI260-167 V13W 8F

U3309DI260-165 V13U 8F

U3309DI260-120 V9AA 8F

U1935DF110-3 I9B 8F

U3309DI260-101 V9H 8F

U3309DI260-153 V13I 8F

U3309DI260-86 IV9M 8F

U3309DI260-72 III9D 8F

U3309DI260-68 II9C 8F

NR 024570.1 Escherichia coli strain U 5/41 16S ribosomal RNA gene, partial sequence

MH782105.1 Escherichia sp. strain 3BT 16S ribosomal RNA gene, partial sequence

U3309DI260-133 IV13G 8F

U3309DI260-164 V13T 8F

U3309DI260-117 V9X 8F

U3309DI260-77 IV9D 8F

U3309DI260-78 IV9E 8F

U3309DI260-106 V9M 8F

U3309DI260-75 IV9B 8F

U3309DI260-170 EcoliK12 8F

ENA|AR657803|AR657803.1 Sequence 33 from patent US 6894156. 

U3309DI260-154 V13J 8F

U3309DI260-108 V9O 8F

U3309DI260-162 V13R 8F

U3309DI260-87 IV9N 8F

U3309DI260-171 ECOR60 8F
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9. Sites 2 and 3 only (Water isolates only, nt=39: n2=19, n3=20) analysis covering variable regions 1 through 6 

using Muscle multiple sequence alignment parameters. After sequences were aligned, base pairs 69 to 1043 

were parsed out and this tree was generated. 

NR 024570.1 Escherichia coli strain U 5/41 16S ribosomal RNA gene, partial sequence

MH782105.1 Escherichia sp. strain 3BT 16S ribosomal RNA gene, partial sequence

U1935DF110-1 II2A 8F

U3309DI260-37 III3F 8F

ENA|AR657803|AR657803.1 Sequence 33 from patent US 6894156. 

U3309DI260-170 EcoliK12 8F

U3309DI260-60 V3D 8F

U1935DF110-2 II3A 8F

U3309DI260-171 ECOR60 8F

U3309DI260-49 IV3M 8F

U3309DI260-45 IV3I 8F

U3309DI260-16 IV2I 8F

U3309DI260-10 IV2C 8F

U3309DI260-28 V2B 8F

U3309DI260-22 IV2O 8F

U3309DI260-35 III3B 8F

U3309DI260-39 IV3C 8F

U3309DI260-44 IV3H 8F

U3309DI260-31 V2E 8F

U3309DI260-15 IV2H 8F

U3309DI260-21 IV2N 8F

U3309DI260-61 V3E 8F

U3309DI260-52 IV3P 8F

U3309DI260-53 IV3Q 8F

U3309DI260-62 V3F 8F

U3309DI260-34 III3A-2 8F

U3309DI260-40 IV3D 8F

U3309DI260-33 III3A-1 8F

U3309DI260-57 V3A 8F

U3309DI260-2 III2A 8F

U3309DI260-29 V2C 8F

U3309DI260-36 III3E 8F

U3309DI260-26 IV2S 8F

U3309DI260-23 IV2P 8F

U3309DI260-48 IV3L 8F

U3309DI260-54 IV3R 8F

U3309DI260-11 IV2D 8F

U3309DI260-32 II3B 8F

U3309DI260-12 IV2E 8F

U3309DI260-14 IV2G 8F

U3309DI260-19 IV2L 8F

U3309DI260-24 IV2Q 8F

U3309DI260-27 V2A 8F

U3309DI260-30 V2D 8F
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Appendix F: E. coli IDEXX data by collection date 

 

 

a) Log10 of E. coli CFU/100mL by sample date. Wells were scored as positive for E. coli if the contents turned 

yellow (indicating the activity of -galactosidase) and also had a blue florescence when exposed to 366nm 

UV light (indicating the activity of -glucuronidase). b) Percent E. coli of Fecal Coliforms by sample date. The 

number of E. coli positive wells (yellow and fluorescent wells) was divided by the number of fecal coliforms 

positive wells (yellow only wells) to determine overall percentages. Sites 2 & 3 = water sites; Sites 9 & 13 = 

sand sites 
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Appendix G: LaTeX alignment and conservation of bases 

 

Representation of the overall conservation of bases in the V6 region of the 16S rRNA gene.  Bases 

highlighted in blue indicate conserved bases.  The size of the letters on top indicate the level of 

conservation. The exclamation point under the alignment indicates complete conservation of base while the 

asterisks indicate the level where green is less conserved than red. 
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