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ABSTRACT OF THESIS 

 

 

Successful non-native species can reduce native species richness through both direct and indirect 

competition. Many invasive ants, such as the European fire ant (Myrmica rubra), are particularly 

successful invaders due to their ability to form multi-nest, multi-queen “supercolonies” that 

appear to displace native ant and non-ant invertebrate fauna in invaded regions. Myrmica rubra 

has invaded the Northeastern United States, including Tifft Nature Preserve in Western New 

York, but its seemingly negative impacts on local invertebrate communities have only been 

assessed using correlative studies, making it difficult to determine whether these ants directly 

displace native ants and invertebrates or are simply better suited for different habitat conditions 

than the natives. I surveyed Western New York parklands to investigate native ant and non-ant 

invertebrate abundance in M. rubra-invaded and uninvaded areas. I then tested these 

observations with an ant pesticide treatment targeting M. rubra at Tifft Nature Preserve to 

investigate the direct impacts of M. rubra on the native ant and invertebrate community and 

potential cascading effects on leaf decomposition. A consistent, negative relationship was found 

between M. rubra and native ants in both the observational and experimental research, and native 

ant species only appeared in the pesticide-treated plots with reduced M. rubra abundance. These 

data strongly suggest that M. rubra actively displaces the native ants with invasion.  Myrmica 

rubra appeared to share habitat with non-ant invertebrates in both the observational and 

experimental research, and the removal of M. rubra resulted in increased predatory invertebrate 

populations and a subsequent decrease in invertebrate prey species. I found no effect of M. rubra 

reduction on leaf litter decomposition. Nevertheless, these results indicate that M. rubra is 

negatively impacting native ant communities, and even though implementing a targeted pesticide 
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may help native ant populations rebound, the removal of M. rubra may negatively impact 

invertebrate detritivores. 
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Introduction 

Non-native species can simplify native assemblages by outcompeting native species with similar 

niche requirements (Mooney and Cleland 2001, MacDougall et al. 2009) and by directly 

exploiting native fauna as prey (Zavaleta et al. 2001, Verble-Pearson and Pearson 2016). If 

successful, a non-native species can dominate a native system (Zavaleta et al. 2001, MacDougall 

and Turkington 2005) and may subsequently reduce native community composition, abundance, 

and biodiversity (Olden and Rooney 2006, Wardle and Peltzer 2017). However, the 

establishment and persistence of a non-native species often are influenced by the physical 

environment as well (Hobbs and Huenneke 1992, Holway et al. 2002). Thus, it is difficult in 

most cases to determine the role of a non-native species as either passive or active in their 

establishment and dominance (MacDougall and Turkington 2005, King and Tschinkel 2008).  

Interspecific competition often structures ant communities (Hölldobler and Wilson 1990), 

and many non-native ant species are exceptional competitors and predators (Mooney and Cleland 

2001, Gibb and Hochuli 2003). Successful non-native ants, such as Linepithema humile and 

Solenopsis invicta, are omnivorous, generalist predators that can exploit nest sites in various 

habitats and climates (Mooney and Cleland 2001, Groden et al. 2005, Bertelsmeier et al. 2016). 

Additionally, non-native ants are often polydomous (multi-nest) and polygynous (multi-queen), 

resulting in densely populated “supercolonies” that allow collective exploitation of resources and 

rapid expansion of genetically related populations (Elmes and Petal 1990, Porter and Sauvignano 

1990, Holway et al. 2002, Garnas et al. 2007). Because native and non-native ants often share 

niche requirements (Parr and Gibb 2009, Warren et al. 2015), competitive exclusion may explain 

the oft-observed displacement of native by non-native ants (Gibb and Hochuli 2003, Groden et 

al. 2005, Hicks et al. 2014). For example, Aphaenogaster rudis (and the closely related congener 
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A. picea) is a dominant native ant species in temperate forests (King et al. 2013) and 

Brachyponera chinensis invades A. rudis-dominated forests, replacing A. rudis as a termite 

predator and displacing it from downed wood nesting sites (Warren et al. 2015). Additionally, 

the invasive Argentine ant (L. humile) uses its high population densities and direct aggression to 

reduce native ant foraging success in invaded regions such as California (Human and Gordon 

1996, Holway 1998b, Holway et al. 2002) and displace native arboreal ants from trunk nesting 

sites in Spain (Carpintero et al. 2005). Studies conducted on another highly invasive ant species, 

Solenopsis invicta, also have found strong negative correlations between S. invicta and native 

ants (Porter and Sauvignano 1990, Gotelli and Arnett 2000, Cook 2003), but work by King and 

Tschinkel (2008) suggests that S. invicta actually prefers anthropogenically altered habitat 

avoided by native ants. In general, non-native species, including ants, often thrive with human 

disturbance (King and Tschinkel 2008, Stuble et al. 2009, Michlewicz and Tryjanowski 2017), 

though non-native and native ants often share niche requirements and are both generally well-

suited for similar habitats (Parr 2008, Parr and Gibb 2009). Hence, decoupling the habitat 

preferences of non-native ants from their active competitive and predatory abilities is a 

prominent challenge in understanding the success of ant invaders. 

Non-native ants can also impact invertebrate communities either through competition for 

shared resource requirements or directly through predation (Boser et al. 2012, Naumann and 

Higgins 2015, Verble-Pearson and Pearson 2016). For example, in addition to its effects on 

native ants, S. invicta also decreases both the abundance and diversity of native invertebrate 

communities where it occurs (Porter and Sauvignano 1990). However, Hanna et al. (2015) 

observed little impact of L. humile invasion on arboreal invertebrates, including spiders and bark 

lice, and Rowles and Silverman (2010) observed minimal L. humile foraging on branches. 
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Ground-dwelling invertebrates, such as ground beetles and millipedes, may therefore be the most 

heavily affected by ant invasions due to shared niche requirements and availability as prey for 

non-natives (Parr and Gibb 2009, Bertelsmeier et al. 2016, Parr et al. 2016). Many of these 

ground-active invertebrates, such as millipedes and isopods, are important leaf litter 

decomposers in temperate terrestrial ecosystems (Hassall et al. 1987, Lavelle et al. 1992, Bogyo 

et al. 2015), and the negative influence of non-native ants on these detritivore communities may 

also alter ecosystem decomposition processes (Zimmer et al. 2005, Parr et al. 2016, Wardle and 

Peltzer 2017).  

The European fire ant, Myrmica rubra, is a Eurasian ant species that has invaded coastal 

areas of North America. In their native Eurasian range, Myrmica ants are keystone species, 

acting as hemipteran-tenders in exchange for honeydew sugars (McPhee et al. 2012, Novgordova 

and Gavrilyuk 2012), symbiotic hosts to rare lycaenid butterflies (Thomas et al. 1989, Elmes et 

al. 1998), and seed dispersers for myrmecochorous plant species (Gorb and Gorb 1999, Fischer 

et al. 2005). Myrmica rubra also appears to possess many characteristics of successful invasive 

ants, such as omnivory (Gorb and Gorb 1999) and the ability to do well in anthropogenically 

altered habitat (Michlewicz and Tryjanowski 2017). In their invaded range, M. rubra ants are 

polygynous and polydomous (Elmes 1973, Groden et al. 2005, Garnas et al. 2007) and feed via 

trophallaxis (consumption and regurgitation) (Cassill and Tschinkel 1996, Groden et al. 2007). 

Non-native M. rubra also reproduce solely through budding, in which a queen and several 

workers break off from the colony and occupy a new nest space (Elmes and Petal 1990). 

Together, these characteristics allow the formation of an extensive supercolony network of M. 

rubra at invaded sites in their non-native range (Groden et al. 2005).  
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Myrmica rubra has invaded many areas in the Northeastern United States, such as Tifft 

Nature Preserve (Tifft) in Buffalo, New York (Spiering 2009, Warren et al. in review), likely via 

ship ballast and ornamental plants (Groden et al. 2005, Hicks et al. 2014). Native ant and other 

invertebrate abundance and richness generally decline with M. rubra in N. America (Garnas et 

al. 2014, Naumann and Higgins 2015, Verble-Pearson and Pearson 2016). For example, Garnas 

(2014) observed the displacement of native ant foragers by M. rubra, and Naumann and Higgins 

(2015) found that in M. rubra-infested areas, native ant abundance and richness both declined. 

Verble-Pearson and Pearson (2016) also observed a decline in arboreal invertebrate abundance 

and the complete absence of arboreal ant species in plots infested by M. rubra. However, these 

results are correlative, and other non-native ant research suggests that negative correlations 

between native and non-native ants may reflect different habitat preferences more than direct 

effects (King and Tschinkel 2008). The objective of this study was to use observational surveys 

and experimental species removal experiments to determine if M. rubra directly reduces native 

ant and non-ant invertebrate communities. Given that non-native ants often become more 

carnivorous in their invaded range (Gorb and Gorb 1999), and the M. rubra populations at Tifft 

are incredibly dense, I predict that M. rubra removal will result in increased native ant and non-

ant invertebrate abundance and richness. Additionally, in order to assess the ecosystem impact of 

M. rubra, I predict that M. rubra removal will result in increased decomposition with intact 

invertebrate communities. 

 

Methods 

Observational study 
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Study sites 

I surveyed six municipal parks/preserves in Western New York (WNY) to observe differences in 

native ant and invertebrate populations at sites invaded and uninvaded by M. rubra.  Three of the 

parks were heavily invaded by M. rubra: Tifft Nature Preserve (Tifft), Times Beach Nature 

Preserve and Fort Niagara State Park. Tifft is a 108-hectare urban nature preserve located on the 

eastern shore of Lake Erie. Times Beach is a 20-hectare site that was dredged and used as a 

dumping site in the 1950s, abandoned, and then repurposed as a nature preserve, and Fort 

Niagara is a 204-hectare park historically used as a military fort that now contains recreational 

fields, a nature center, and forested areas with hiking trails. For comparison, I chose the nearest 

uninvaded park: Red Jacket River Front Park, Earl W. Brydges Artpark State Park, and Darien 

Lakes State Park. Red Jacket River Front Park is a 1.6-hectare former shipping and industrial site 

restored to woodland and marsh habitat. Earl W. Bridges Artpark State Park is a 44-hectare park 

overlooking the Niagara Gorge that contains forested hiking trails and serves as a venue for 

concerts and other recreational events, and Darien Lakes State Park is a 747-hectare park 

containing campgrounds, woodlands, streams, hiking trails, and Harlow Lake.  

In May 2017, ten 5-m2 plots (n = 60 plots total) were established at each of the six study 

sites. The plots were equally spaced at 10-m intervals along 200 m transects that crossed forested 

areas of the parks/preserves at least 10 m from forest edges. Ten-minute timed surveys were 

conducted at each plot biweekly from May-September. All rocks, downed wood, and 

anthropogenic items within each plot were overturned and the invertebrates residing under each 

were counted and identified to order. Soil moisture measurements were taken at each plot using a 

handheld Hydrosense Soil Water Content Measurement System (Campbell Scientific, Inc., 

Logan, UT, USA), and soil temperature was determined using a wide-range thermometer (Taylor 



6 
 

Precision Produces, Las Cruces, NM, USA). These measurements were taken at three random 

locations within each sampling plot, and the values were averaged. 

 

Experimental study 

Study Site 

Tifft historically was a shipping center for coal, wood, and iron ore, and a dumping ground for 

industrial and residential waste, but was turned into a nature preserve in the 1970s (Spiering 

2009). The current habitat at Tifft includes woodlands, marshes, grasslands, and ponds. The 

canopy is dominated by native eastern cottonwood (Populus deltoides) and the understory by 

non-native vegetation, such as Japanese knotweed (Fallopia japonica) and buckthorn (Rhamnus 

cathartica) (Spiering 2009, Labatore et al. 2016).  

 

Experimental Plots 

In order to test the impacts of M. rubra removal, 20 2-m2 square plots were used, with 10 plots 

receiving ant pesticide and 10 plots serving as controls. Based on ant surveys in 1994 and 2015 

(Warren et al. in review), experimental and control plots were randomly selected from areas 

containing approximately equal and high densities of M. rubra (>1000 ants plot-1) . Each of the 

twenty plots also contained similar soil temperature and moisture conditions.  

Based on an ant-bait design derived from Boser et al. (2012), I used Extinguish Plus 

[active ingredients: 0.25% s-methoprene (ant toxicant) and 0.36% hydramethylnon (ant growth 

inhibitor)] coupled with a sugar attractant and deployed in polyvinyl chloride (PVC) bait 

stations. PVC bait stations were 3.8-cm in diameter and 41-cm in length, capped at both ends, 
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with small holes on one end to allow entry of ant-sized organisms. I used Extinguish Plus 

toxicant bait because typical toxic baits are not effective in managing ant populations of species 

such as L. humile and M. rubra which transport food through trophallaxis (consumption and 

regurgitation) (Groden et al. 2007, Boser et al. 2012). These species ingest their food, transport it 

to the nest, and regurgitate it for the queen and larval consumption (Cassill and Tschinkel 1996). 

When feeding on a toxic bait, the workers consume the poison and die before reaching the nest 

or queens. Soybean-encased ant toxicant granules, such as Extinguish Plus, provide a toxicant 

delivery method designed to target ants that engage in trophallaxis. The ants can consume the 

granules, which delay the metabolic breakdown of the poison allowing the workers time to 

engage in trophallaxis and feed the toxicant to the queens (Boser et al. 2012). Since the dominant 

North American woodland ant, Aphaenogaster rudis (King et al. 2013), does not use trophallaxis 

for feeding (Cassill and Tschinkel 1996) and has been previously observed low abundances in 

the infested plots along with other non-target species, the non-target effects were expected to be 

minimal. Additionally, a study conducted by Gaigher et al. (2012) used a pesticide with the same 

active ingredients as Extinguish Plus and found no non-target impacts. 

The PVC bait stations were placed in the center of the 2-m2 treatment plots and left for 

the duration of the experiment. Each bait station was monitored and refilled biweekly May-July 

2017. However, 2017 was a particularly wet Summer, and the bait stations appeared ineffective 

as very few ants entered the PVC and fungal growth quickly built up inside the PVC baits 

despite biweekly cleaning and refilling. As a result, the pesticide application method was 

changed to broadcast spreading in the treatment plots following the manufacturers 

recommendation for imported fire ants (Invictus solenepsis, 1.68 kg/ha weekly) for the remainder 

of the experiment (July-September). 
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Invertebrate sampling 

All invertebrates were sampled biweekly in each plot May – September 2017. In order to 

augment invertebrate sampling, four 0.25 m x 0.25 m plywood coverboards were placed in each 

plot at each corner of a 1.5-m2 square within the 2-m2 plots. Environmental measurements were 

taken using the same methods as in the observational study. 

Leaves of P. deltoides, F. japonica, and R. cathartica were collected (representing the 

Tifft ground cover), mixed thoroughly, cleaned and oven-dried for 48 hours until equilibrium 

moisture content was reached. Four grams of the dried leaf mix were then placed into 2.5-mm 

mesh leaf bags with nine 6-mm holes punched into each bag to allow the entry of larger 

organisms. Four leaf bags were placed in each plot for the duration of the removal experiment. 

Two leaf bags were placed underneath the plywood coverboards and two leaf bags were placed 

next to the remaining coverboards. The packs were removed from the study site in early 

September, rinsed and oven-dried for 48 hours, and re-weighed to determine any loss in dry 

mass. All invertebrates within the leaf packs were collected and identified. 

 

Data analysis 

All statistical analyses were performed using the R statistical program (2017). Models with 

multiple independent variables were tested for multicollinearity (variance inflation < 2.5) using 

the 'car' package (Fox and Weisberg 2011) and logistic regression models were tested for 

overdispersion (Φ < 1).  

Native ant, as well as detritivore and predatory invertebrate (Table 1) abundance for each 

timed survey plot were analyzed as functions of M. rubra presence/absence and week (and an 
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M.rubra x week interaction term) using Generalized Linear Models (GLM) assuming quasi-

Poisson error distributions (because the count data were overdispersed) and invertebrate species 

richness was analyzed using a GLM with Poisson error distribution. Linear regression models 

were used to evaluate M. rubra abundance as a function of temperature and soil moisture (in 

separate models as these variables often covary). 

Myrmica rubra, native ant, detritivore, and predatory invertebrate abundances were 

analyzed as functions of pesticide treatment and application days using GLMs with quasi-

Poisson distributed data fit with Analysis of Deviance (ANODEV) models with an 'F' test. 

Myrmica rubra x experimental days interaction terms were included to measure the cumulative 

effect of repeated pesticide applications.  

The difference between initial and final leaf dry mass (i.e. decomposition) was calculated 

for each sample. Decomposition was analyzed using the 'lme4' package (Bates et al. 2015) and a 

linear mixed model with cover (coverboard and exposed) and treatment (pesticide and control) as 

fixed effects and plot as a random effect (to account for pseudoreplication from multiple 

decomposition bags per plot).  

 

Results 

Timed surveys 

Native ant abundance was lower where M. rubra was present (coeff. = -4.404, SE = 0.582, t-

value = -7.570, p-value < 0.001) [Figure 1] and decreased throughout the summer (coeff. = -

0.134, SE = 0.040, t-value = -3.347, p-value < 0.001). An interaction between M. rubra presence 

and study weeks indicated that predatory invertebrate abundance decreased throughout the 
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summer where M. rubra was present (coeff. = 0.116, SE = 0.049, z-value = -2.381, p-value = 

0.017) [Figure 2A]. Conversely, detritivore abundance was higher where M. rubra was present 

(coeff. = 1.552, SE = 0.189, t-value = 8.179, p-value < 0.001) [Figure 2B] but decreased 

throughout the summer independent of M. rubra presence (coeff. = -0.100, SE = 0.041, t-value = 

-2.442, p-value = 0.015). Additionally, detritivore abundance was higher where predatory 

invertebrate abundance was higher (coeff. = 0.123, SE = 0.043, t-value = 2.830, p-value = 0.005). 

Overall invertebrate taxonomic richness was greater with M. rubra presence (coeff. =1.340, SE 

=0.171, t-value = 7.828, p-value < 0.001), and sites where M. rubra was present had both higher 

soil moisture (coeff. = 0.135, SE = 0.014, t-value = 9.308, p-value < 0.001) [Figure 3A] and 

higher temperatures (coeff. = 0.193, SE = 0.052, t-value = 3.690, p-value < 0.001) [Figure 3B].  

 

Myrmica rubra removal 

The pesticide treatment decreased M. rubra forager abundance by 44% (untreated = 129.6 M. 

rubra ants plot-1; treated = 72.4 M. rubra ants plot-1) by the end of the study. A treatment x 

experimental days interaction indicated that the effectiveness of the pesticide treatment in 

decreasing M. rubra foragers increased with experimental days (Df = 1, Dev. = 535, Res. Df = 

136, Res. Dev. = 8724, F-value = 6.107, p-value = 0.015) [Figure 4]. Detritivores decreased in 

abundance with experimental days in M. rubra removal treatment plots (Df = 1, Dev. = 559, Res. 

Df = 136, Res. Dev. = 16850, F-value = 3.859, p-value = 0.052) [Figure 5A]. Conversely, the 

abundance of predators increased with experimental days and M. rubra removal (Df = 1, Dev. = 

11.6, Res. Df = 138, Res. Dev. = 252, F-value = 3.14, p-value = 0.009) [Figure 5B]. Overall 

invertebrate taxonomic richness increased from 4.25±0.2 to 4.95±0.2 taxonomic units plot-1 with 
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M. rubra removal (Df = 1, Dev. = 3.7, Res. Df = 138, Res. Dev. = 82, F-value = 6.63, p-value = 

0.011). 

Native ant abundance increased with pesticide treatment (Df = 1, Dev. = 97.0, Res. Df = 

138, Res. Dev. = 389, p-value < 0.001) [Figure 6] and somewhat with the number of days after 

treatment initiation (Df = 1, Dev. = 23.7, Res. Df = 137, Res. Dev. = 365, p-value = 0.08). 

Indeed, native ant colonies only appeared in the removal plots approximately 40 days after 

treatments were initiated, and no native ants were found in any untreated plot at any point in the 

study (untreated = 0 native ants plot-1; treated = 7 native ants plot-1).    

 

Leaf decomposition 

Leaf litter decomposition was unaffected by the pesticide treatment (coeff. = -0.375, SE = 0.390, 

t-value = -0.958, p-value = 0.352) and M. rubra abundance (coeff. = -0.039, SE = 0.089, t-value 

= 0.445, p-value = 0.657). Leaf litter decomposition was higher below coverboards (coeff. = -

0.776, SE = 0.331, t-value = -2.344, p-value = 0.022) and somewhat greater with the total 

number of invertebrates found in the leaf bags (coeff. = 0.029, SE = 0.018, t-value = 1.617, p-

value = 0.110). Invertebrates were more common in leaf bags under the coverboards (14.7±1.91) 

than leaf bags outside the coverboards (7.00±0.87; p- value < 0.001).  

 

Discussion 

A consistent, negative relationship was found between M. rubra and native ants throughout this 

study. In the observational study, native ants were more abundant in the uninvaded parks, 

suggesting that M. rubra either displaces native ants or there are habitat differences that 
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segregate M. rubra and native ants. However, field experiments revealed a one-way, negative 

relationship between M. rubra and native ants, as native ants rebounded only in the plots where 

M. rubra was removed, suggesting that M. rubra directly limits native ant populations. The 

relationship between M. rubra and non-ant invertebrates also was consistent between the 

observational and experimental portions of the study as detritivores increased with M. rubra and 

predatory invertebrates either decreased or were unaffected. Leaf decomposition appeared to be 

unaffected by M. rubra presence but was greater under coverboards as was the number of 

invertebrates found in leaf bags. Terrestrial decomposition is primarily driven by fungi and is 

typically slow with very little loss in dry mass after only three months (Vorıskova´ and Baldrian 

2013), indicating that this short study period may have been insufficient to determine potential 

decomposition impacts of M. rubra removal. 

Negative relationships are often observed between native and non-native ant species. 

Observational studies on species such as Linepithema humile (Kennedy 1998, Holway and 

Suarez 2006) and Solenopsis invicta (Morris and Steigman 1993) suggest that these non-natives 

negatively correlate with native ant populations, though each is inconclusive about the 

mechanisms driving these relationships. Myrmica rubra also appear to negatively correlate with 

native ants, as Garnas (2004) found only a quarter of the native ant taxa in M. rubra-invaded 

areas as in uninvaded areas, and Garnas et al. (2014) also found fewer native ants where M. 

rubra was present, just as in both portions of my study. Habitat segregation might account for the 

observed differences between native and non-native ant abundance, as some non-native ants do 

well in disturbed habitat where natives generally do not (King and Tschinkel 2008, Michlewicz 

and Tryjanowski 2017), and abiotic factors have been found to play a role in both ant invasions 

(Menke and Holway 2006) and observed differences between native and non-native ant 
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abundance (Stuble et al. 2009). Alternatively, non-native ants are thought to be superior 

competitors to native ant species, both for food resources (Porter and Sauvignano 1990, Human 

and Gordon 1996, Garnas et al. 2014) and nest space (Holway et al. 2002), actively establishing 

their dominance of invaded habitats. Species such as L. humile, S. invicta, and M. rubra use a 

polygyne, unicolonial structure to rapidly expand their populations (Porter and Sauvignano 1990, 

Human and Gordon 1996, Groden et al. 2005) which may ultimately lead to a competitive 

numerical advantage over smaller ant colonies (Holway et al. 2002). Due to the comparative 

nature of observational studies, it can be difficult to determine whether the observed inverse 

relationships between native and non-native ants, such as M. rubra, are a result of habitat 

segregation or non-native ant dominance.  

A more direct approach to studying non-native species impacts is the use of experimental 

eradication (Zavaleta et al. 2001, Zarnetske et al. 2010, Simberloff et al. 2013) which allows for 

comparison within an invaded area and the subsequent elimination of problematic confounding 

factors associated with observational studies. Recently, experimental methods also have been 

applied to invasive ant management (Boser et al. 2012), such as the ant-addition experiment 

implemented by King and Tschinkel (2008) which suggests that S. invicta invasion is driven by 

habitat conditions and therefore does not actively induce a decline in native ant abundance. To 

my knowledge, my study is the first to use removal methods to eradicate M. rubra from an 

invaded area, and despite possible reduced impacts due to the rainy summer season, the pesticide 

treatment significantly reduced M. rubra populations, which was sufficient to determine that M. 

rubra abundance, rather than habitat, limits native ants. As such, the results of my experimental 

removal study, in contrast to King and Tschinkel (2008), suggest that M. rubra is actively 
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limiting native ant populations in Tifft, as native ants were able to rebound once M. rubra were 

reduced.  

Two native species, Crematogaster cerasi and Temnothorax longispinosus, appeared in 

the pesticide-treated plots once M. rubra populations had decreased. Temnothorax longispinosus 

is a native ant that nests in plant and rock cavities, forms small colonies (Herbers 1986), and has 

not been documented as an aggressive species (Snelling et al. 2014). Temnothorax ants typically 

forage for small invertebrates such as collembolans (Bengston and Dornhaus 2013) and are 

therefore unlikely to consume the pesticide granules used in this study. Crematogaster are 

relatively aggressive, arboreal ants that actively hunt invertebrate prey on trees and plant material 

(Richard et al. 2001, Longino 2003), making them less susceptible to the ground-administered 

pesticide. As M. rubra ants also forage in trees, they may be competing with C. cerasi and other 

arboreal invertebrates for resources (Verble-Pearson and Pearson 2016). However, given that 

Warren et al. (in review) found M. rubra to be less competitive for food resources and less 

directly aggressive than native ants, it is unlikely that M. rubra are displacing native ants via 

competitive abilities alone. Rather, priority effects coupled with supercolony characteristics may 

have allowed the initial M. rubra population to obtain optimal nest spaces and grow large enough 

to compensate for their lesser competitive and aggressive tendencies against native ants. In a 

follow-up study to Porter and Savignano (1990), Morrison (2002) observed that a native 

invertebrate community may be able to rebound naturally following the initial invasion period of 

a non-native ant. However, M. rubra has persisted in Tifft since the 1970’s (Warren et al. in 

review), thus a rebound by native ants seems unlikely without management intervention. 

In contrast to the native ants, non-ant invertebrate abundance positively correlated with 

M. rubra abundance in the observational portion of this study. Many studies have observed no 
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significant associations (Holway 1998a, Hanna et al. 2015) and even positive associations 

(Morrison and Porter 2003) between non-native ants, such as S. invicta and L. humile, and non-

ant invertebrate communities. Additionally, a positive association between M. rubra and non-ant 

invertebrates has been observed in at least one other observational study (Garnas 2004), and 

shared habitat or microhabitat preferences may account for these positive correlations (Morrison 

and Porter 2003) as the habitat requirements for M. rubra and ground-dwelling invertebrates, 

such as isopods, often overlap (Garnas 2004). Although these observational results are 

inconsistent with some of the existing literature (Porter and Sauvignano 1990, Naumann and 

Higgins 2015), the experimental portion of this study also suggested that detritivores may benefit 

from M. rubra invasion, as the non-treatment control plots contained fewer predator 

invertebrates and higher prey species abundances. Positive relationships between non-native ants 

and detritivores coupled with negative relationships between predators and non-native ants have 

been observed previously (Krushelnycky and Gillespie 2008), though my study is the first to my 

knowledge to provide experimental evidence for such relationships with M. rubra. Experimental 

evidence also exists for negative relationships between non-native fire ants and predators that 

typically feed on invertebrates, such as birds and rodents (Pedersen et al. 2003, Allen et al. 

2004). Although the experimental results suggest a positive impact of M. rubra on detritivores, a 

positive relationship between detritivores and predators was found in the observational study as 

well. Therefore, M. rubra is likely not benefiting detritivore abundance by outcompeting 

predatory invertebrates but instead may be keeping larger vertebrate predators out of infested 

sites (Pedersen et al. 2003) and allowing invertebrates to thrive in habitat with limited larger 

predators.   
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These results suggest M. rubra is actively influencing invertebrate communities t at 

invaded locations in Western New York. The prior arrival of M. rubra at Tifft coupled with their 

supercolony structure and successful, invasive characteristics, may allow M. rubra to exclude 

native ants, and therefore, the eradication of M. rubra from Tifft may allow the native ant 

community to expand and use the nest space currently exploited by non-natives. However, 

management efforts may also negatively impact local non-ant invertebrates as M. rubra appear to 

be beneficial to the detritivore invertebrate community. 

 

  



17 
 

References 

Allen, C. R., D. M. Epperson, and A. S. Garmestani. 2004. Red imported fire ant impacts on 

wildlife: a decade of research. The American Midland Naturalist 152:88-103. 

Bates, D., M. Maechler, B. Bolker, and S. Walker. 2015. Fitting linear mixed-effects models 

using lme4. Journal of Statistical Software 67:1-48. 

Bengston, S. E., and A. Dornhaus. 2013. Colony size does not predict foraging distance in the 

ant Temnothorax rugatulus: a puzzle for standard scaling models. Insectes Sociaux 

60:93-96. 

Bertelsmeier, C., O. Blight, and F. Courchamp. 2016. Invasions of ants (Hymenoptera: 

Formicidae) in light of global climate change. Myrmecological News 22:25-42. 

Bogyo, D., T. Magura, E. Simon, and B. Tothmeresz. 2015. Millipede (Diplopoda) assemblages 

alter drastically by urbanization. Landscape and Urban Planning 133:118-126. 

Boser, C. L., C. Hanna, K. R. Faulkner, C. Corey, J. M. Randall, and S. A. Morrison. 2012. 

Argentine ant management in conservation areas: results of a pilot study. Monographs of 

the Western North American Naturalist 7:518-530. 

Carpintero, S., J. Reyes-López, and L. Arias de Reyna. 2005. Impact of Argentine ants 

(Linepithema humile) on an arboreal ant community in Doñana National Park, Spain. 

Biodiversity and Conservation 14:151-163. 

Cassill, D. L., and W. R. Tschinkel. 1996. A duration constant for worker-to-larva trophallaxis in 

fire ants. Insectes Sociaux 43:149-166. 

Cook, J. 2003. Conservation of biodiversity in an area impacted by the red imported fire ant, 

Solenopsis invicta (Hymenoptera: Formicidae). Biodiversity and Conservation 12:187-

195. 

Elmes, G. W. 1973. Observations on the density of queens in natural colonies of Myrmica rubra 

L. (Hymenoptera: Formicidae). Journal of Animal Ecology 42:761-771. 

Elmes, G. W., and J. Petal. 1990. Queen number as an adaptable trait: evidence from wild 

populations of two red ant species (Genus myrmica). Journal of Animal Ecology 59:675-

690. 



18 
 

Elmes, G. W., J. A. Thomas, J. C. Wardlaw, M. E. Hochberg, R. T. Clarke, and D. J. Simcox. 

1998. The ecology of Myrmica ants in relation to the conservation of Maculinea 

butterflies. Journal of Insect Conservation 2:67-78. 

Fischer, R. C., S. M. Olzant, W. Wanek, and V. Mayer. 2005. The fate of Corydalis cava 

elaiosomes within an ant colony of Myrmica rubra: elaiosomes are preferentially fed to 

larvae. Insectes Sociaux 52:55-62. 

Fox, J., and S. Weisberg. 2011. An {R} Companion to Applied Regression: Second Edition. 

Sage, Thousand Oaks, CA. 

Gaigher, R., M. J. Samways, K. G. Jolliffe, and S. Jolliffe. 2012. Precision control of an invasive 

ant on an ecologically sensitive tropical island: a principle with wide applicability. 

Ecological Applications 22:1405-1412. 

Garnas, J. 2004. European fire ants on Mount Desert Island, Maine: population structure, 

mechanisms of competition and community impacts of Myrmica rubra L. (Hymenoptera: 

Formicidae). University of Maine. 

Garnas, J., E. Groden, and F. A. Drummond. 2014. Mechanisms of competitive displacement of 

native ant fauna by invading Myrmica rubra (Hymenoptera: Formicidae) populations. 

Environmental Entomology 43:1496-1506. 

Garnas, J. R., F. A. Drummond, and E. Groden. 2007. Intercolony aggression within and among 

local populations of the invasive ant, Myrmica rubra (Hymenoptera: Formicidae), in 

coastal Maine. Environmental Entomology 36:105-113. 

Gibb, H., and D. F. Hochuli. 2003. Colonisation by a dominant ant facilitated by anthropogenic 

disturbance: effets on ant assemblage composition, biomass, and resource use. Oikos 

103:469-478. 

Gorb, S. N., and E. V. Gorb. 1999. Effects of ant species composition on seed removal in 

deciduous forest in eastern Europe. Oikos 84:110-118. 

Gotelli, N. J., and A. E. Arnett. 2000. Biogeographic effects of red fire ant invasion. Ecology 

Letters 3:257-261. 

Groden, E., F. Drummond, C. Graham, K. McPhee, and N. Gammons. 2007. Ecology and 

management of the European fire ant, Myrmica rubra in Acadia National Park. 



19 
 

Groden, E., F. A. Drummond, J. Garnas, and Franceour. 2005. Distribution of an invasive ant, 

Myrmica rubra (Hymenoptera: Formicidae), in Maine. Journal of Economic Entomology 

98:1774-1784. 

Hanna, C., I. Naughton, C. Boser, and D. Holway. 2015. Testing the effects of ant invasions on 

non-ant arthropods with high-resolution taxonomic data. Ecological Applications 

25:1841-1850. 

Hassall, M., J. G. Turner, and M. R. W. Rands. 1987. Effects of terrestrial isopods on the 

decomposition of woodland leaf litter. Oecologia 72:597-604. 

Herbers, J. M. 1986. Nest site limitation and facultative polygyny in the ant Leptothorax 

longispinosus. Behavioral Ecology and Sociobiology 19:115-122. 

Hicks, B. J., B. L. Pilgrim, and H. D. Marshall. 2014. Origins and genetic composition of the 

European fire ant (Hymenoptera: Formicidae) in Newfoundland, Canada. The Canadian 

Entomologist 146:457-464. 

Hobbs, R. J., and L. F. Huenneke. 1992. Disturbance, diversity, and invasion: implications for 

conservation. Conservation Biology 6:324-337. 

Hölldobler, B., and E. O. Wilson. 1990. The Ants. Harvard University Press, Cambridge, MA. 

Holway, D. A. 1998a. Effect of Argentine ant invasions on ground-dwelling arthropods in 

northern California riparian woodlands. Oecologia 116:252-258. 

Holway, D. A. 1998b. Factors governing rate of invasion: a natural experiment using Argentine 

ants. Oecologia 115:206-212. 

Holway, D. A., L. Lach, A. V. Suarez, and T. J. Case. 2002. The causes and consequences of ant 

invasions. Annual Review of Ecology and Systematics 33:181-233. 

Holway, D. A., and A. V. Suarez. 2006. Homogenization of ant communities in mediterranean 

California: the effects of urbanization and invasion. Biological Conservation 127:319-

326. 

Human, K. G., and D. Gordon. 1996. Exploitation and interference competition between the 

invasive Argentine Ant, Linepithema humile, and native ant species. Oecologia 105:405-

412. 

Kennedy, T. A. 1998. Patterns of an invasion by Argentine ants (Linepithema humile) in a 

riparian corridor and its effects on ant diversity. The American Midland Naturalist 

140:343-350. 



20 
 

King, J. R., and W. R. Tschinkel. 2008. Experimental evidence that human impacts drive fire ant 

invasions and ecological change. PNAS 105:20339-20343. 

King, J. R., R. J. Warren, and M. A. Bradford. 2013. Social insects dominate eastern US 

temperate hardwood forest macroinvertebrate communities in warmer regions. PLoS 

ONE 8:e75843. 

Krushelnycky, P., and R. G. Gillespie. 2008. Compositional and functional stability of arthropod 

communities in the face of ant invasions. Ecological Applications 18:1547-1562. 

Labatore, A. C., D. J. Spiering, D. L. Potts, and R. J. Warren II. 2016. Canopy trees in an urban 

landscape - viable forests or long-lived gardens? Urban Ecosystems. 

Lavelle, P., E. Blanchart, A. Martin, A. V. Spain, and S. Martin. 1992. The impact of soil fauna 

on the properties in the humid tropics. 

Longino, J. T. 2003. The Crematogaster (Hymenoptera, Formicidae, Myrmicinae) of Costa Rica. 

Zootaxa 151:1-150. 

MacDougall, A. S., B. Gilbert, and J. M. Levine. 2009. Plant invasions and the niche. Journal of 

Ecology 97:609-615. 

MacDougall, A. S., and R. Turkington. 2005. Are invasive species the drivers or passengers of 

change in degraded ecosystems? Ecology 86:42-55. 

McPhee, K., J. Garnas, F. Drummond, and E. Groden. 2012. Homopterans and an invasive red 

ant, Myrmica rubra (L.), in Maine. Environmental Entomology 41:59-71. 

Menke, S. B., and D. A. Holway. 2006. Abiotic factors control invasion by Argentine ants at the 

community scale. Journal of Animal Ecology 75:368-376. 

Michlewicz, M., and P. Tryjanowski. 2017. Anthropogenic waste products as preferred nest sites 

for Myrmica rubra (L.) (Hymenoptera, Formicidae). Journal of Hymenoptera Research 

57:103-114. 

Mooney, H. A., and E. E. Cleland. 2001. The evolutionary impact of invasive species. 

Proceedings of the National Academy of Sciences 98:5446-5451. 

Morris, J. R., and K. L. Steigman. 1993. Effects of polygyne fire ant invasion on native ants of a 

blackland prairie in Texas. The Southwestern Naturalist 38:136-140. 

Morrison, L. W. 2002. Long-term impacts of an arthropod-community invasion by the imported 

fire ant, Solenopsis invicta. Ecology 83:2337-2345. 



21 
 

Morrison, L. W., and S. D. Porter. 2003. Positive association between densities of the red 

imported fire ant, Solenopsis invicta (Hymenoptera: Formicidae), and generalized ant and 

arthropod diversity. Environmental Entomology 32:548-554. 

Naumann, K., and R. J. Higgins. 2015. The European fire ant (Hymenoptera: Formicidae) as an 

invasive species: Impact on local ant species and other epigaeic arthropods. Canadian 

Entomology 147:592-601. 

Novgordova, T. A., and A. V. Gavrilyuk. 2012. The degree of protection different ants 

(Hymenoptera: Formicidae) provide aphids (Hemiptera: Aphididae) against 

aphidophages. European Journal of Entomology 109:187-196. 

Olden, J. D., and T. P. Rooney. 2006. On defining and quantifying biotic homogenization. 

Global Ecology and Biogeography 15:113-120. 

Parr, C. L. 2008. Dominant ants can control assemblage species richness in a South African 

savanna. Journal of Animal Ecology 77:1191-1198. 

Parr, C. L., P. Eggleton, A. B. Davies, T. A. Evans, and S. Holdsworth. 2016. Suppression of 

savanna ants alters invertebrate composition and influences key ecosystem processes. 

Ecology 97:1611-1617. 

Parr, C. L., and H. Gibb. 2009. Competition and the role of dominant ants. 

Pedersen, E. K., T. L. Bedford, W. E. Grant, S. B. Vinson, J. B. Martin, M. T. Longnecker, C. L. 

Barr, and B. M. Drees. 2003. Effect of red imported fire ants on habitat use by Hispid 

cotton rats (Sigmodon hispidus) and norther pygmy mice (Baiomys taylori). The 

Southwestern Naturalist 48:419-426. 

Porter, S. D., and D. A. Sauvignano. 1990. Invasion of polygyne fire ants decimates native ants 

and disrupts arthropod community. Ecology 71:2095-2106. 

Richard, F., A. Fabre, and A. Dejean. 2001. Predatory behavior in dominant arboreal ant species: 

the case of Crematogaster sp. (Hymenoptera: Formicidae). Journal of Insect Behavior 

14:271-282. 

Rowles, A. D., and J. Silverman. 2010. Argentine ant invasion associated with loblolly pines in 

the southeastern United States: minimal impacts but seasonally sustained. Environmental 

Entomology 39:1141-1150. 

Simberloff, D., J. Martin, P. Genovesi, V. Maris, D. A. Wardle, J. Aronson, F. Courchamp, B. 

Galil, E. Garcia-Berthou, M. Pascal, P. Pysek, R. Sousa, E. Tabacchi, and M. Vila. 2013. 



22 
 

Impacts of biological invasions: what's what and the way forward. Trends in Ecology & 

Evolution 28:58-66. 

Snelling, R. R., M. L. Borowiec, and M. M. Prebus. 2014. Studies on California ants: a review of 

the genus Temnothorax (Hymenoptera, Formicidae). ZooKeys 372:27-89. 

Spiering, D. J. 2009. Tifft Nature Preserve Management Plan. 

Stuble, K. L., L. K. Kirkman, and C. R. Carroll. 2009. Patterns of abundance of fire ants and 

native ants in a native ecosystem. Ecological Entomology 34:520-526. 

Team, R. D. C. 2017. R: a language and environment for statistical computing. R Foundation for 

Statistical Computing, Vienna. 

Thomas, J. A., G. W. Elmes, J. C. Wardlaw, and M. Woyciechowski. 1989. Host specificity 

among Maculinea butterflies in Myrmica ant nests. Oecologia 79:452-457. 

Verble-Pearson, R., and S. Pearson. 2016. European fire ant presence decreases native arboreal 

insect abundance in Acadia National Park, Maine, USA. Natural Areas Journal 36:162-

165. 

Vorıskova´, J., and P. Baldrian. 2013. Fungal community on decomposing leaf litter undergoes 

rapid successional changes. ISME 7:477-486. 

Wardle, D. A., and D. A. Peltzer. 2017. Impacts of invasive biota in forest ecosystems in an 

aboveground-belowground context. Biological Invasions. 

Warren, R. J., A. McMillan, J. R. King, L. Chick, and M. A. Bradford. 2015. Forest invader 

replaces predation but not dispersal services by a keystone species. Biological Invasions 

23:3153-3162. 

Warren, R. J., K. Reed, A. Mathew, K. Krupp, M. Goodman, and D. Spiering. in review. Release 

from intraspecific competition promotes dominance of a non-native invader. In Review. 

Zarnetske, P. L., E. W. Seabloom, and S. D. Hacker. 2010. Non-target effects of invasive species 

management: beachgrass, birds, and bulldozers in coastal dunes. Ecosphere 1. 

Zavaleta, E. S., R. J. Hobbs, and H. A. Mooney. 2001. Viewing invasive species removal in a 

whole-ecosystem context. Trends in Ecology & Evolution 16:454-459. 

Zimmer, M., G. Kautz, and W. Topp. 2005. Do woodlice and earthworms interact synergistically 

in leaf litter decomposition? Functional Ecology 19:7-16. 

  



23 
 

Predatory Invertebrates Detritivore Invertebrates 

Order: Coleoptera Order: Diplopoda 

Order: Chilopoda Order: Isopoda 

Class: Arachnida Class: Clitellata 

 Class: Collembola 

 Class: Gastropoda 

 

Table 1. List of taxonomic units and their assigned functional groups.  
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Figure 1. Native ant abundance versus Myrmica rubra presence in six parks across Western New 

York. Native ant abundance per plot was greater where M. rubra was absent. 
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Figure 2. Predatory invertebrate abundance (a) and detritivore invertebrate abundance (b) as a 

function of Myrmica rubra presence in six parks across Western New York. Predatory 

invertebrates declined throughout the summer where M. rubra was present and remained 

relatively unchanged where M. rubra was absent. Greater detritivore abundance was found in the 

presence of M. rubra.    
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Figure 3. Observed Myrmica rubra presence as a function of (a) soil moisture and (b) 

temperature in six parks across Western New York. Myrmica rubra was present at higher soil 

moisture and warmer temperature conditions. 
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Figure 4. Interaction plot for treatment x days impacts on Myrmica rubra abundance using a 

pesticide treatment at Tifft Nature Preserve. A significant interaction between treatment and days 

indicated that the pesticide treatment became more effective at reducing M. rubra populations in 

pesticide-treated plots as time went on.  
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Figure 5. Interaction plots for treatment x days impacts on (A) detritivores and (B) predator 

invertebrates using a pesticide treatment at Tifft. Significant interactions indicated both a 

decrease in detritivores and an increase in predator invertebrates in pesticide-treated plots as time 

went on.   
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Figure 6. Pesticide treatment impact on the average number of native ants per plot at Tifft. The 

average number of native ants in untreated plots was 0 ants per plot and 7.00±5.17 ants per plot 

in pesticide-treated plots. No native ants were found in any control plots throughout the study.  
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