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ABSTRACT OF THESIS 

The Skin Disease Mutation Cx31L209F Induces a Calcium- and Cobalt-Sensitive Leak 

Current across the Plasma Membrane 

 

Gap junctions are essential to the function of multicellular animals, which require a high 

degree of coordination between cells. The functions of gap junctions are highly diverse 

and include exchange of metabolites and electrical signals between cells, as well as 

functions apparently unrelated to intercellular communication. In vertebrates, gap 

junctions are comprised of connexin proteins and over 20 connexins have been identified 

in humans.  Each connexin is named according to its predicted molecular weight, for 

instance connexin31 (Cx31) has a predicted molecular weight of 31 KDa.  Mutations in 

connexin genes cause a variety of disorders depending on the connexin protein affected. 

Cx31 is one of the gap junction proteins expressed in skin and the inner ear. Some point 

mutations cause a rare skin disease termed erythrokeratodermia variabilis (EKV) whereas 

other mutations cause non-syndromic hearing loss (NSHL). The main goal of this project 

was to create, express and study Cx31L209F, a hereditary skin disease mutation which 

occurs in the fourth transmembrane domain. Other mutations (S26T, C86S and L135V) 

were also briefly studied.  The L209F mutant induced large membrane currents and 

compromised the health of single cells suggesting that aberrant hemichannel behavior 

may underlie the disease pathology. Cell death in L209F-expressing cells was rescued by 

the addition of 2 mM calcium or 1 mM cobalt, conditions known to block hemichannel 

function. Two of the other mutations S26T, and L135V appeared to form gap junctions 

with altered gating properties.  
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Introduction 

 Gap junctions are specialized membrane structures that provide an intercellular 

pathway for the propagation of signals and diffusion of ions and metabolites between 

cells.  They also have functions that are unrelated to transport such as signaling (Alberts 

et al., 2005). The proteins that form gap junctions in vertebrates differ from those that 

form gap junctions in invertebrates.  In vertebrates, gap junctions are formed by 

connexins, whereas invertebrate gap junction proteins are called innexins (Phelan 2005).  

 

Gap Junction Structure 

 Connexin proteins are the major components of vertebrate gap junction channels 

and are arranged to form aqueous pores that connect the cytoplasm of two cells, allowing 

the transfer of ions and small molecules (Saez et al., 2005). Each connexin protein has 

four transmembrane domains, cytoplasmic amino- and carboxyl termini and two 

extracellular loops (Figure 1a). The sequence and structure of the extracellular loops are 

important determinants of docking interactions. Six connexin proteins assemble to form a 

connexon which is also known as a hemichannel. Each gap junction channel is composed 

of two connexons, which connect or “dock” in the extracellular space (Figure 1b). 

Connexons that are composed of the same connexins are referred to as homomeric, while 

connexons of different connexins are called heteromeric. Additionally, gap junction 

channels formed from the same two connexons are referred to as homotypic, whereas gap 

junctions formed from different connexons are referred to heterotypic (Figure 2a). All of 

these interactions create a broad range of properties in the resulting gap junction channels 

(Goodenough and Paul, 2009). 
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The Connexin Family of Proteins  

 In humans, over 20 different connexin proteins are expressed and each is named 

according to its molecular weight (Scott and Kelsell, 2011). Their expression patterns are 

cell specific and are also overlapping.  Connexin interactions occur when multiple 

connexins are expressed in the same cell or in adjacent communicating cells.  Interactions 

may occur in the endoplasmic reticulum, as the connexin is being trafficked through the 

golgi apparatus or when connexons dock to form intercellular channels (Figure 2b). Like 

most integral membrane proteins, connexins are co-translationally inserted into the ER 

(endoplasmic reticulum). Properly folded connexins are expected to pass through the ER-

Golgi intermediate compartment (ERGIC) prior to entering the cis-Golgi network (Figure 

2b). Several studies have revealed that connexins pass through the Golgi apparatus 

(Musil and Goodenough, 1993). However, other studies have reported that Cx26 can 

reach the cell surface via a Golgi-independent pathway (Evans et al., 1999).   

 

Connexin-Related Diseases 

 Connexin mutations cause a variety of disorders depending on the connexin 

protein affected (Scott and Kelsell, 2011). Connexin31 (Cx31), the focus of this study, is 

expressed in skin, inner ear (Figure 3a and b) and peripheral nerves. Mutations are most 

commonly associated with skin disease but may also cause deafness and/or neuropathy in 

humans (Richard et al., 1998; Scott and Kelsell, 2011). This indicates that Cx31 has a 

role in epidermal differentiation, auditory and neuronal function (Unsworth et al., 2007). 

Furthermore, mutations associated with the same condition may be inherited in an 

autosomal dominant pattern (eg. the skin disease mutation Cx31R42P, Richard et al., 
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1998) or a recessive pattern (eg. the skin disease mutation Cx31 L34P, Gottfried et al., 

2002).   

 Mutations associated with skin disorders specifically cause erythrokeratodermia 

variabilis (EKV) which is classified as a rare skin disease causing abnormal and often 

dangerous skin thickening known as hyperkeratosis (Richard et al., 1998; Scott and 

Kelsell, 2011). Mutations that affect the ear cause non-syndromic hearing loss (NSHL) 

(Laird, 2006). NSHL appears to occur when intercellular communication within the 

cochlea is disrupted, altering potassium distribution (Kikuchi et al., 2000).  

 Interestingly, some Cx31mutations cause only skin disease, some cause only 

deafness, while others have widespread effects. For instance, the G12R mutation 

specifically causes EKV (Itin et al., 1998; Diestel et al., 2002) , the mutation V43M 

causes deafness (Oh et al., 2013) and the mutation Del66D is associated with 

sensorineural hearing loss and peripheral neuropathy (López-Bigas et al., 2001). It is 

unlikely that these differences are based solely on the severity of the mutation, and it has 

been postulated that the location of a mutation in relation to specific protein domains 

might be important. For instance, it was postulated that mutations within the extracellular 

loops are more likely to cause skin disease (López-Bigas et al., 2002), while those in 

other parts of the protein cause deafness (Kelsell et al., 1997). While this does not appear 

to be the case, as new mutations within other domains have been identified, it could 

highlight the importance of variable connexin roles in different tissue.   

 Understanding the consequences of a mutation requires an understanding of 

protein synthesis and trafficking, as well as understanding protein structure-function 

relationships. Connexin proteins have a half-life of a few hours and this short lifespan has 
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been well-documented in cultured cells and in tissue (Laird 2006).  Thus, for reasons that 

remain unclear, connexins are pre-programmed to be continually biosynthesized and 

degraded. It has been suggested that the short half-life is related to a requirement for 

rapid regulation of coupling in response to physiological changes (Laird, 2006). The 

oocyte expression system will be used to assess function of Cx31 mutations in this study. 

The oocyte expression system is ideal for characterizing properties of gap junction 

proteins that traffic to the membrane and form channels with aberrant properties. Ideally 

it is used in combination with studies of trafficking and oligomerization, particularly 

when a mutation fails to form channels. 

 

Analysis of Cx31L209F and Other Mutations that Cause Skin Disease 

 The epidermis of the skin is composed primarily of keratinocytes which undergo 

differentiation, leading to the formation of stratum corneum which forms the skin barrier. 

Cx31 is highly expressed in the stratum granulosum which is part of the upper 

differentiating layer of the epidermis (Di et al., 2001). While the majority of experiments 

focused on L209F, several other mutations were also studied including S26T, L135V and 

C86S. The locations of these mutations are highlighted in Figure 1a and a brief summary 

of the literature related to their identification and characterization is summarized below. 

 

Cx31S26T is a poorly studied mutation associated with EKV (Richard et al., 

2000) listed on the Connexin-Deafness Homepage (http://www.crg.es/deafness) 

under “Connexins Causing Other Diseases”.  It involves substitution of threonine 

http://www.crg.es/deafness
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for serine at position 26 within the first transmembrane domain. There does not 

appear to be any literature related to its expression and characterization.   

  

Cx31C86S was one of the first Cx31 mutations associated with EKV (Richard et al., 

1998). It involves substitution of serine for cysteine at position 86 within the second 

transmembrane domain. When it was expressed in Hela cells it appeared to induce cell 

death (He et al., 2005).  Cell death did not appear to occur as a result of hemichannel 

formation. Tattersal and colleagues (2009) further identified an upregulation of the 

unfolded protein response (UPR) as a result of ER retention after expression of C86S in 

cells. By using the oocyte expression system, we aim to determine if C86S is capable of 

forming functional gap junction channels and if so, to further assess the properties of 

those channels. 

 

Cx31L135V was identified in a family with the skin disorder EKV (Scott et al., 

2011). This mutation involves an amino acid substitution of valine for leucine at 

position 135. The residue L135 is located at the border between the cytoplasmic 

loop and the third transmembrane domain (Figure 1a). This dominant mutation 

has been expressed in mammalian cells. It appears to traffic to the plasma 

membrane but does not facilitate dye transfer between cells (Rouan et al., 2003; 

Tattersall et al., 2009). This suggests incorrect assembly or altered properties of 

the resulting gap junctions. 

 

Cx31L209F  The Cx31 mutation L209F was identified in a family with EKV and in 

one unrelated sporadic case (Morley et al., 2005). This mutation may have structural 
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and/or functional significance because it occurs at a conserved phenylalanine residue at 

the border of the cytoplasmic carboxyl terminus and fourth transmembrane domain. 

(Morley et al., 2005).  To the best of our knowledge, the L209F mutation has not been 

previously expressed in oocytes or mammalian cultured cells to investigate the functional 

consequences of the mutation. 

 

Expression in Xenopus Oocytes  

 Oocytes were extracted from Xenopus laevis, a frog found in South Africa. These 

cells are primarily used because of their large size and easiness to maintain and are 

considered the most convenient system to study exogenously expressed ion channels 

(Dascal, 1987). Gap junction channels form between oocytes when gap junction proteins 

are expressed and cells are paired together after removal of the vitelline layer (Werner et 

al, 1985). By coupling oocytes and measuring intercellular junctional conductance, 

properties of mutated gap junctions can be compared to the wild type. This study may 

provide insight into the ways Cx31 mutations effect human physiology and eventually 

allow preventative measures for treatment EKV and NSHL. 
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Methods 

Overview 

 The hCx31 gene (GJB3), was obtained as a gift from Dr. David Kelsell (Barts and 

the University College of London).  The gene was transferred to a TOPO-CT GFP vector 

by Shelby Rarick (SUNY Buffalo State).  Important features of this vector include a 

priming site for RNA polymerase, ampicillin resistance sequences, a multiple restriction 

site, and a c-terminal GFP tag (Figure 4).  For our studies, a stop codon was included at 

the end of the Cx31 sequence to prevent GFP-fusion as our goal was to characterize 

properties of mutants rather than study their localization. Site-directed mutagenesis was 

used to create the mutation L209F. The mutations S26T, C86S and L135V were created 

as part of a class project in BIO314 Advanced Cell Biology (Spring 2014). 

 

Primer Design  

 To facilitate sequence-related aspects of the project, a group of programs offered 

through Biology Workbench (San Diego Supercomputer, SDSC) was used.  The human 

Cx31 gene sequence (GJB3) was obtained through NCBI (accession number 

gi_54607054), uploaded as a nucleotide file, and using the Six Frame function of Biology 

Workbench, the longest Open Reading Frame (ORF) was determined. This sequence was 

selected and saved as a translated protein file. 

              In order to design primers for the mutation L209F, the Stratagene Quikchange 

Primer Design software (Agilent Technologies, Santa Clara, CA) was used. The 

adjustment was made at the 209th codon, originally coding for leucine, converting it to 

the codon for phenylalanine. Mutagenic primers were ordered from IDT (Integrated DNA 
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Technologies, Coalville, Iowa) and they were complementary to one another because 

each primer initiates DNA synthesis on a complementary strand of the plasmid. Forward 

and reverse primers (labelled L209Fa and L209Fb, respectively) were 31 nucleotides in 

length and had a Tm of 78.28 ⁰C (Figure5). 

 

Site- Directed Mutagenesis 

 The QuikChange method of mutagenesis was used to create the L209F mutation 

(Quikchange Mutagenesis Kit, Agilent Technologies).  In the first part of the mutagenic 

process, PCR was used in combination with the mutagenic L209F primers to produce 

site-directed mutated DNA. Primers were obtained as lyophilized powder. They were 

reconstituted by adding 100 μl of nuclease-free water. Primers were further diluted by 

mixing 10 μl of primer with 90 μl of nuclease-free water immediately prior to the 

reaction. In order to calculate an appropriate primer concentration and volume for the 

mutagenesis reaction the mass of each primer was obtained from the information 

provided by the primer-synthesis company (IDT, Coralville Iowa). Primer L209Fa was 

reconstituted from a mass of 0.25 mg/ml and L209Fb from a mass of 0.28 mg/ml.  The 

volume of each primer added to the mutagenesis reaction is shown in Figure 6.  The 

reaction also requires 20 ng of template DNA (the plasmid containing Cx31), reaction 

buffer, dinucleotide triphosphates (dNTP mix), and a DNA polymerase (Quikchange 

Lighetning DNA Polymerase, Agilent Technologies, Santa Clara Inc). The polymerase is 

a high fidelity DNA polymerase that extends mutagenic primers during each PCR 

(Polymerase Chain Reaction) cycle. PCR is a temperature-dependent process with three 

key steps. The first step is denaturation at 95⁰C, the second step in annealing at 65⁰C, and 
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the final step is extension at 70⁰C. These processes are facilitated through the use of a 

thermocycler (BIO RAD, Singapore), which is capable of accurately and quickly 

changing temperature and completing 18 cycles in about 90 minutes. Each cycle creates 

mutated Cx31 plasmid DNA using the original DNA as a template.  Unlike amplifying 

PCR reactions, the newly synthesized daughter strands are not used as templates in 

subsequent cycles.  In this application, the daughter strands contain nicks created adjacent 

to the incorporated primers.   

 After the mutagenic thermocycler session, 2µl of DpnI restriction enzyme was 

added. The DpnI restriction enzyme digests methylated DNA leaving new non-

methylated mutant strands intact.  In our case the Dpn-digest involved an accelerated 

enzyme (Fast-Digest Dpn, Agilent Technologies, Santa Clara Inc) and the reaction was 

incubated at 37⁰C for 15 minutes before the DNA was stored at -20⁰C for further analysis 

 The Dpn-digested DNA was used to transform competent cells (XL-10 Gold 

Ultracompetent Cells, Agilent Technologies, Santa Clara). Two microliters of the DpnI –

treated DNA were transferred to a 14 mL tube containing 50 µl of XL-1 super competent 

cells. The contents were swirled gently. The reaction was then heat’ pulsed for 45 

seconds at 42 °C and placed back on ice for 2 minutes. About 500µl of 42⁰C pre-heated 

nutrient broth (SOC- 20 g/L tryptone, 5 g/L yeast extract, 4.8 g/L MgSO4, 3.6 g/L 

dextrose, 0.5g/L NaCl, 0.186 g/L KCl, Agilent Technologies, Santa Clara) was then 

added before placing in a shaking incubator for 1 hour at 37⁰C. Using a sterilized glass 

rod, 250µl of transformed bacteria was spread evenly on each of two plates.  Plates were 

made with LB medium supplemented with ampicillin (10g/l tryptone, 10g/l NaCl, and 

5g/l yeast extract, 100 μg/ml ampicillin) and 1% agar.   The presence of ampicillin 
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facilitates selection of cells carrying our Cx31 plasmid. Plates and then incubated 

overnight at 37°C. The following day single colonies were observed and the plates were 

wrapped in parafilm for storage at 4 °C.  

 Individual colonies were transferred to about 2 ml of LB medium (10g/l tryptone, 

10g/l NaCl, and 5g/l yeast extract, 100 μg/ml ampicillin).  Innoculation was performed 

using the “flame and loop” method. This process was repeated 4 times. Incubated tubes 

were placed in a shaking incubator overnight at 250 RPM and 37⁰C. 

 A glycerol stock was created for each selected colony in preparation for 

identification of a successful mutation. Three tubes were filled with 500µl of glycerol 

each and then 500µl of the three most turbid cultures was transferred to the stock tubes. 

These tubes were carefully labeled L209Fa, b and c to allow association of sequencing 

results. After being mixed, the stock tubes were stored at -80⁰C. 

 The remaining culture was used for plasmid isolation. About 1.5 ml was 

centrifuged at 13,000 rpm in a table top centrifuge, the supernatant discarded and the 

pellet used in a Qiagen miniprep procedure using centrifugation (Qiagen Inc, 

Mississauga, ON).  In the final step, 50 µl of plasmid DNA was eluted in the provided 

elution buffer.   Gel electrophoresis was performed to assess the approximate 

concentration of plasmid DNA. Two microliters of plasmid DNA from each sample was 

mixed with 4 μl of loading dye then samples were loaded on a 1% agarose gel including 

ethidium bromide, alongside 5μl of DNA ladder to estimate concentration (ZipRuler 2, 

Fermentas Inc). Following electrophoresis at 90 mV for 20 minutes, samples were 

visualized under ultraviolet light and concentration was estimated by comparing the 
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intensity of experimental DNA bands to the known bands in the ladder.  After confirming 

that DNA concentration was greater than 20 ng/μl, small volumes were sent to Genscript 

(Piscataway, NJ) for sequence analysis. Sequencing was performed using the Sanger 

sequencing method with T7 primers. Biology Workbench (SDSC) was used for sequence 

analysis. Nucleotide sequences were downloaded from Genscript and translated using 

SixFrame.  Successive alignment of the wtCx31 protein sequence with each mutated 

sequence shows altered nucleotides and sequence accuracy.  All samples gave excellent 

sequencing through the 207th codon and all contained the mutation resulting in an L209F 

substitution.  Figure 7 shows an alignment of one of the L209F samples.  The L29F 

substitution is noted in the last line with a box.  Other than the targeted mutation, and 

some mismatches at the end of the sequence read, the L209F was identical to Cx31. 

 

In Vitro Transcription  

 DNA was linearized with Xba1 to prepare for in Vitro transcription. Xba1 cuts the 

TOPO vector downstream of the Cx31 coding region (Figure 5). Since all three samples 

contained the mutation,  the sample with the highest concentration of plasmid DNA and 

the longest sequence read was chosen.  Double autoclaved microfuge tubes were used for 

this procedure to prevent contamination with RNase enzymes that might affect 

subsequent steps. Ten microliters of DNA was linearized in a reaction that included 10x 

reaction buffer and 2µl of fast digest Xba1 restriction enzyme. The reaction was 

incubated at 37⁰C for 25 minutes. Following linearization, RNA was transcribed in vitro 

using a mMessage mMachine in vitro transcription kit (Applied Biosystems/Ambion, 

Austin TX) and recovered via LiCl precipitation method, after precipitation and 



12 
 

reconstitution the RNA was run on a 1% agarose gel alongside an RNA control (RNA 

250, Applied Biosystems, Austin TX).  The results are shown in Figure 8a.   The RNA was 

then diluted to a concentration of 125 ng/μl or 68 ng/μl with nuclease-free water (Applied 

BiosystemsAustin TX) prior to injection.  Diluted samples of the RNA are shown in 

Figure 8b.  Given a typical injection volume of 40 nl, these concentrations result in about 

5 ng and 2.5 ng of RNA per oocyte.   

 

Expression in Xenopus Oocytes  

 Oocytes were surgically removed from Xenopus laevis females and treated with 

collagenase in order to remove the follicle layer. They were cleaned and digested in 

Oocyte Ringers 2 (OR2; 82.5 mM NaCl, 2 mM KCl, 1 mM MgCl2, 5 mM HEPES, pH 

7.4) and maintained in modified Barth’s (MB1) solution (88 mM NaCl, 1 mM KCl, 0.41 

mM CaCl2, 0.82 mM MgSO4, 1 mM MgCl2, 0.33 mM Ca(NO3)2, 20 mM HEPES, pH 

7.4) (Figure 8a). All oocytes used for gap junction studies were pre-injected with 0.1 ng 

of morpholino antisense oligonucleotide directed against Xenopus Cx38 (Gene Tools 

LLC, Philomath, OR). An NanojectII microinjector (Drummond Scientific, Broomall, 

PA) was used to inject the RNA..  RNA was typically injected at a final concentration of 

125 ng/µl (total RNA ~ 5 ng/oocyte).  For single oocyte analysis, oocytes were 

maintained in shallow culture dishes bathed in MB1.  For gap junction studies, the 

vitelline layer was removed and oocytes paired in agar wells (1% agar in MB1) to allow 

intercellular channel formation.  

 For analysis of single oocytes, a two-electrode voltage clamp was used.  For gap 

junction studies two of the same amplifiers (Axopatch200B, Molecular Devices, 
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Sunnyvale CA) were used to create a dual cell two-electrode voltage clamp.  Dual cell 

clamping allowed us to determine junctional conductance and assess voltage-dependence 

of gap junction channels.  One electrode senses voltage in each cell and the other injects 

current to clamp the voltage.  The “clamp” current reflects the membrane conductance. In 

order to acquire and analyze our data, the programs Clampex10 and Clampfit10 

(Molecular Devices, Sunnyvale CA) were used. The program Origin8 (OriginLab, 

Northampton, MA) was used for graphing and statistical analysis. 

 

 

 

Results and Discussion 

Hydropathy Analysis of L209F 

 In membrane proteins, including connexins, large, bulky amino acids tend to 

cluster at the boundaries of membrane-spanning domains (Mall et al., 2001; Maeda et al., 

2009; Brennan et al., 2015) and it has been postulated that inserting or substituting bulky 

side-chains could influence membrane topology (Brennan et al., 2015). Residue L209 is 

located near the cytoplasmic boundary of the fourth transmembrane domain suggesting 

that phenylalanine substitution might alter topology. Topology prediction software is 

readily available and using TMHMM (Krogh et al., 2001, Biology Workbench, SanDiego 

Super Computer) we compared the predicted amino acids contributing to the fourth 

transmembrane domain of Cx31. It was noted that L209F did not influence topology as 

shown in Figure 9.  In both Cx31 and L209F residues 188 through 210 are predicted to lie 
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within the membrane. While this predictive software does not provide definitive evidence 

regarding insertion of transmembrane domains, it should be noted that at least one other 

mutation (eg. R42P) was found to alter the predicted membrane topology providing a 

possible explanation for the abnormal behavior of the resulting channels (John Lang and 

Daniel Abbatoy, Bio314 Class Project). 

 

Expression of Cx31L209F Compromises the Health of Oocytes 

 The main goal of oocyte expression was to determine if L209F was capable for 

forming gap junctions.  The first attempts to express L209F in oocytes were challenging.  

The oocytes typically died before they could be paired and on rare occasion when they 

survived long enough to be paired the pairs died before we could record intercellular 

currents.  Images of oocytes after injection (Figure 10) show the appearance of healthy 

versus unhealthy oocytes.  Healthy oocytes maintain a clear division of pigment, with 

animal (dark colored) and vegetal (light colored) pigments divided by an “equator”.  

Unhealthy oocytes typically lose the clear division of pigmentation prior to bursting and 

release of yolky cytoplasm.   

 

Cx31L209F May be Capable of Forming Gap Junctions 

  We were able to record one set of intercellular currents from paired oocytes 

expressing the mutant L209F (Cx31/L209F) and it appeared that the mutant was able to 

form functional channels.  These results are shown in Figure 11, middle row left image.  
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In contrast to Cx31 (top two sets of traces) the pair involving L209F did not exhibit 

voltage-dependent inactivation.  The lack of voltage-dependence may indicate that these 

currents are not really representative of gap junctions. Intercellular currents that lack 

voltage sensitivity often reflect membrane fusion.  Another issue with the traces is that 

both sides of the junction lack voltage sensitivity.  A more typical result for a mutation 

that disrupted voltage sensitivity would be an asymmetric set of junctional currents with 

gating at least retained on the wild-type side.  In summary, although L209F induced 

intercellular currents between oocytes, there is little evidence to suggest that gap junction 

channels were responsible. It is more likely that membrane fusion occurred which would 

be consistent with observation that oocyte health was compromised by the oocytes.  

Further studies of paired oocytes are needed to confirm or refute the ability of L209F to 

form gap junctions. These may be possible using new evidence shown below indicating 

that calcium and cobalt can be added to the media to enhance viability of L209F-

expressing oocytes.   

 

Two Other Cx31 Mutants form Gap Junctions with Altered Properties  

 Two other Cx31 mutants were expressed in oocytes and formed gap junction 

channels.  These include L135V and S26T (Figure 11, middle row right and bottom row 

left respectively) which both formed gap junctions with aberrant gating properties.  The 

voltage sensitive properties of these mutants can be compared with Cx31/Cx31 channels 

(top row).  In both cases the mutants were paired heterotypically with wildtype Cx31 and 

asymmetric currents were observed. In these preliminary experiments we did not note 
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orientation of the paired oocyte so we cannot definitively assign specific gating properties 

to the mutants. However it is most likely that the oocyte displaying the voltage-dependent 

inactivation is the Cx31-expressing oocyte.  For both mutants, one of the oocytes is 

expressing gap junction channels that activate (rather than inactivate) in response to 

voltage.  This is apparent as a slight increase in outward current at higher voltages (note 

that this is the opposite response to wild-type connexins).   

Changes in voltage sensitivity suggest that structural rearrangements have 

occurred within the regions of the protein responsible for sensing voltage and/or gating.  

For connexins in general, there is evidence that the transjunctional voltage (Vj) sensor 

lies within the amino terminal domain (Verselis et al., 1994; Harris 2001) and that gating 

in response to Vj occurs as a result of global rearrangements of transmembrane domains 

(Skerrett et al., 1999; Harris 2001; Brennan et al., 2015). Our results suggest that S26T, 

may cause the channel to remain partially closed at rest, but open in response to Vj.  

Similar observations have been made for a number of connexin mutations including 

several that are associated with disease.  For instance Cx26M34T is one of the most 

prevalent deafness mutations and it also induces a reversal in gating response (Skerrett et 

al., 2004).  The mutation L135V has a similar but less dramatic effect on channel 

properties.  At rest, the channels appear to be open but conductance increases with higher 

Vj.  Further studies are required to confirm the results that Cx31S26T and Cx31L135V 

form gap junction channels with aberrant properties.  
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Unusual Voltage-Dependent Gating of Cx31 

 There is very little published information related to electrophysiological analysis 

of Cx31 (Abrams et al., 2006) and nothing published so far regarding expression of Cx31 

in oocytes.  While analyzing the behavior of wtCx31 in oocyte pairs it was noted that the 

responses in my experiments (Figure 11) are very similar to those of other students 

(Shelby Rarick, Honors Thesis; Shahd Kadhim, MA Thesis) that have expressed Cx31 in 

oocytes. Connexins vary greatly in their sensitivity to Vj, and Cx31 appears to be one of 

the least sensitive (Abrams et al., 2006; Harris, 2001). Direct comparison of the time-

course of inactivation are possible by fitting an exponential curve to the data and 

obtaining a time constant of inactivation at a particular voltage. This analysis is ongoing 

and requires additional data that includes longer pulse lengths than those employed in this 

study.  An interesting observation made while attempting to record longer pulses revealed 

that longer pulses (eg. 5- 20 seconds) induced subsequent decreases in conductance.  This 

suggests that the channels are not fully recovering after they close in response to voltage.  

Similar observations were made by Shahd Kadhim (2015) while working on her Master’s 

thesis in our lab.  When high Vj was applied, even after recovery times up to 5 minutes, 

gap junction conductance did not recover.  This is very unusual as gap junction channels 

composed of most connexins gate to the maximum extent within a few seconds and then 

recover fully within seconds.  A detailed analysis of Vj sensitivity in wtCx31 is ongoing. 

In this study Cx31 Vj-recovery was briefly investigated using a pulse protocol 

involving repeated pulses to 100 mV, followed by a variable recovery period prior to a Vj 

pulse to 100 mV in the opposite polarity.  If the channels recover between the 100 and -

100 mV pulses the magnitude of the current should be the same in the recovery pulse as 
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in the original pulse.  A similar pulse protocol is used to test recovery from inactivation 

in voltage gated sodium and potassium channels (Landowne, 2006). When this pulse 

protocol was applied to Cx31 (Figure 11 bottom right) with each pulse to 100 mV the 

recovery current became smaller regardless of the time allowed for recovery. This 

suggests that Cx31 may possess a gating mechanism that is unique amongst the 

connexins and identifies an added consideration for assessing voltage sensitivity of Cx31 

mutants. 

 

Expression of Cx31L209F Causes Leaky Membranes 

 In order to further study the mechanism by which expression of L209F reduced 

oocyte viability we measured membrane currents in single oocytes expressing L209F. 

The results are shown in Figure 12. Single oocyte voltage clamp was used to pulse 

oocytes between -160 mV and 60 mV. Expression of Cx31 caused very little change in 

membrane properties from that of the negative control (compare filled squares and filled 

triangles). The “oligo” control involved injection of an antisense morpholino, pre-injected 

to reduce expression of endogenous XeCx38. All oocytes receive this “oligo” injection 

prior to injection of connexin RNA. Figure 12 also shows currents induced by two other 

mutants C86S and L135V which cause very mild changes in the current levels.  Work by 

future students will focus on expression of these mutants in other batches of oocytes and 

the significance of these minor changes in current will be assessed. However, L209F 

induces very large leak currents. These currents saturate the capability of the voltage 

clamp outside the range of -40 to +40 mV producing the S-shaped current versus voltage 
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curve.  Most important is the region where current is accurately reflected (-40 mV to 40 

mV) where L209F is strikingly different than Cx31 or other mutants.  

 The observation that L209F induces leak currents in oocytes is indicative of 

altered regulation of hemichannel (connexon) activity.  Prior to docking, connexons must 

be regulated to prevent ions and metabolites from leaking across the membrane of the cell 

prior to gap junction formation.  This is in part carried out by a “loop gate” at the 

extracellular end of the first transmembrane domain (Harris 2001; Verselis et al., 2009).  

Altered hemichannel behavior is unfolding as a key mechanism in connexin-associated 

disease (Martin and van Steensel, 2015; Lilly et al., 2016).  In particular several of the 

connexins expressed in skin and ear have hereditary mutations associated with disease 

and aberrant hemichannel activity (Garcia et al., 2015; Lilly et al., 2016).  This is the first 

observation that Cx31L209F is a mutation that induces aberrant hemichannel behavior 

and is a plausible explanation for the effects of L209F in terms of skin disease.  Targeting 

aberrant hemichannel activity with blockers may provide therapeutic relief for symptoms 

of skin disease.   

Further investigation of L209F-expression in single oocytes. 

 To better understand aspects of L209F-mediated cell death we investigated the 

effect of RNA concentration and the time-course of cell death. As expected, there was a 

strong correlation between the amount of RNA injected and the viability of oocytes one 

day post-injection.  For all the experiments described thus far, oocytes were injected with 

about 5 ng of RNA (injection volume = 41 nl, RNA concentration ≈ 125 ng/µl), a 

quantity that is thought to be optimal for the expression of wtCx31.   
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Figure 13 summarizes the association between RNA levels and cell viability for 

one batch of oocytes. RNA dilutions were made so that full strength equaled 125 ng/µl, ½ 

strength equaled 68 ng/µl and ¼ strength equaled 34 ng/µl. Cx31 was tested at full and 

half strength. L209F was tested at full, one-half and one-quarter strength. For this 

particular batch about 85% of uninjected oocytes survived, about 65% of Cx31 (full-

strength) and about 52% of L209F (full-strength) survived. Viability increased to almost 

control levels in the ½ strength Cx31 group and the ¼ strength L209F group. Although 

survival rates varied between batches of oocytes similar patterns were observed in other 

groups of cells.   

The correlation between RNA quantity and survival is consistent with a 

hemichannel-induced mechanism of cell death.  A hemichannel-related mechanism of 

cell death would also be consistent with more rapid decline in oocyte health when higher 

numbers of channels are formed.  The time-course of cell death is plotted in Figure 14 for 

oocytes injected with varying amounts of L209F RNA.  Oocytes injected with RNA 

encoding Cx31 survived for at least 48 hours after injection (open circles).  In this 

wildtype group, even after 66 hours almost half of the oocytes were still alive.  In 

contrast, less than 10% of oocytes injected with L209F (125 ng/µl) were alive after 40 

hours.  Overall there was a strong correlation between the amount of L209F RNA 

injected and the survival of the oocytes.   

Oocytes expressing L209F are rescued by calcium and cobalt 

 Some connexins that naturally form hemichannels (eg. Cx50) are regulated by 

external calcium concentration (Harris 2001; Ebihara 2003).  Mild increases, for instance 
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1 mM, in external calcium reduce the magnitude of connexin-dependent membrane 

currents (Harris 2001).  For this reason, regulation of membrane currents by calcium is 

often viewed as evidence of hemichannel behavior, most often to investigate the behavior 

of wildtype connexins (Harris, 2001).  Less frequently, cobalt is also used (Malchow et 

al., 1993).  Both calcium (2 mM) and cobalt (1 mM) enhanced the survival of L209F-

expressing oocytes.  Both ions were added to the MB1 solution as chloride salts 

immediately after oocytes were injected with connexin RNA.  Aboout 40 hours after 

injection about 12% of L209F-expressing oocytes whereas about 60% and 80% were 

alive in the calcium and cobalt containing media respectively.  Figure 15 summarizes the 

effect of calcium and cobalt on oocyte viability.  The strongest effect was observed with 

cobalt which boosted survival to 66 hours post-injection from 6% to 72%.   

 

Conclusion 

Overall the results suggest that L209F induces a calcium- and cobalt-sensitive 

leak current when expressed in oocytes.  Membrane currents in L209F-expressing 

oocytes were several orders of magnitude greater than those of Cx31 and two other 

mutants. The leaky membranes were correlated with low survival of L209F-injected 

oocytes.  Survival was enhanced by inclusion of 2 mM CaCl2 or 1 mM CoCl2 in the 

media surrounding the cells, consistent with aberrant hemichannel behavior.  The 

effectiveness of calcium and cobalt in enhancing viability of L209F-expressing oocytes 

presents new avenues in the pursuit of therapeutic strategies in individuals suffering from 
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skin disease.  Many questions remain including the question of whether Cx31L209F 

interacts with other connexins that are coexpressed in skin.    
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Figure 1 

 

 

A                    B 

                                                                                                                                             

 

Figure 1. Connexin topology and gap junction organization. (A) Membrane topology of a 

typical connexin. Each connexin includes four transmembrane domains (M1-M4), two 

extracellular loops (E1and E2), a cytoplasmic loop (CL), and cytoplasmic amino and 

carboxyl domains. The location of mutations studied are indicated with arrows. (B) Gap 

junction channels are formed by the docking of two hemichannels (connexons), which 

together form a continuous aqueous pore linking the cytoplasm of the two cells. Each 

connexon is composed of six connexin proteins arranged around a central pore (Cook and 

Becker, 2009). 
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Figure 2 

A                                                                                                         B 

 

 

 

 

Figure 2. Cellular organization of connexins.  (A) Arrangement of connexins into various 

channel types. Homomeric channels occur when one type of connexin makes up a 

connexon and heteromeric channels occur when different connexins make up a connexon. 

Docking of connexons results in either homotypic or heterotypic gap junction channels 

(Mathias et al., 2010). (B) Connexin life cycle within a cell.  A connexin protein begins 

its life cycle when it is cotranslationally inserted into the endoplasmic reticulum.  On 

trafficking to the Golgi apparatus it undergoes oligomerization. After microtubule-

facilitated transport to the cell surface, the connexon can dock with connexon 

counterparts from an adhered neighboring cell to form gap junction channels that 

aggregate with other channels constituting the mature gap junction or gap junction plaque 

(Laird, 2006). 
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Figure 3 

A                                                          

 

B 

 

Figure 3.  Organs where Cx31 is expressed (A) The epidermis is composed of four layers 

in thin skin: stratum basale, stratum spinosum, stratum granulosum, and stratum 

corneum. Several connexins are expressed in specific and overlapping patterns. Cx31 

(green) is expressed in the statum granulosum and upper levels of the stratum 

spinulosum. Like Cx31, Cx37 (brown) is expressed in both the statum granulosum and 

stratum spinosum. Cx43 (red) and Cx31.1 (purple) are expressed in the stratum spinosum 

and stratum basale. Cx40 (blue) is restricted to the stratum basale. Cx30 and Cx26 (both 

in yellow) localize to various epidermal layers of epidermis (Churko and Laird, 2013). 

(B) Connexins are expressed in the inner ear where they play a role in development and 

distribution of potassium ions in the cochlea. Nonsensory epithelial cells indicated in 

pink express Cx26 and Cx30, while fibrocytes express Cx31 (Mammano et al., 2007).  
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Figure 4 

 

 

 

 

Figure 4. The gene encoding human Cx31 (GJB3) was inserted into a TOPO GFP fusion 

plasmid (Thermoscientific, Grand Island NY). The gene was inserted so that the T7 

polymerase could be used to synthesize sense RNA. The Cx31 gene included a STOP 

codon and the GFP fusion did not occur. The GFP tag will be used for future studies 

involving expression in mammalian cell lines. The restriction enzyme Xbal was used to 

linearize the DNA prior to in vitro transcription. 
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Figure 5 

 

 

Figure 5. Using the Quikchange Primer Design Program on the stratagene.com website, 

the human Cx31 gene sequence was modified to incorporate a mutation in the 209th 

codon resulting in the substitution L209F.  Each primers is 31 bases in length with a Tm 

of 78.98⁰C.  The primers are complementary to one another to facilitate the mutation on 

opposite strands of the Cx31 sequence.   

 

 

 

 

 

 

 

   

     Primer Name                       Length (nt.)                    Tm                     

 

      L209Fa                                                31                            78.98⁰C                                            

      L209Fb                                                31                             78.98⁰C                

      
 Primer-template duplexes:  

 

                     Primer Name                                                                    Primer-Template Duplex 

                                                 a t c t g t g a g c t c t g c t a c c t c a t c t g c c a c a g g g t c c  

      L209Fba            | | | | | | | | | | | | | | |  | | | | | | | | | | | | | | |  
                   3 ' - a c a c t c g a g a c g a t g a a g t a g a c g g t g t c c c - 5 '

  

                                             5 ' - t g t g a g c t c t g c t a c t t c a t c t g c c a c a g g g 3 '  

      L209Fb             | | | | | | | | | | | | | | |  | | | | | | | | | | | | | | |  
                   t a g a c a c t c g a g a c g a t g g a g t a g a c g g t g t c c c a g g  
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Figure 6 

 

   

 5 µl of 10X reaction buffer 

 2.5 µl of DNA plasmid (20 ng) 

 5 µl of primer #A 

 4.5 µl of primer #B 

 1 µl of dNTP mix 

 30.5 µl of ddH2O to bring up to volume of 50 µl   

___________________________________ 

          50 µl total in reaction 

+      1 µl of Quikchange Lightening DNA polymerase 

 

 

 

Figure 6. Components of the mutagenesis reaction. The reaction was assembled in a 500 

µl thin-walled PCR tube in the order listed. One microliter of Quickchange lightening 

enzyme was added just prior to PCR.  
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Figure 7 

 

 

 

Figure 7.  Amino acid alignment of Cx31 (top) and the L209F mutant. The human Cx31 

gene sequence was retrieved from Genbank (accession # gi 54607054) and translated 

using the “Sixframe” function on Biology Workbench (SanDiego Supercompter, SDSC). 

The mutant sequence was retrieved from Genscript (Piscataway, NJ) after plasmid DNA 

was sequenced in Genscript’s sequencing facility. This sequence was translated using 

Sixframe and aligned with wildtype Cx31 amino acid sequence using ClustalW. 

Successful mutagenesis was confirmed by the change in leucine at position 209 to 

phenylalanine as indicated with the black box. 
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Figure 8 

A 

                        

B  

                                

 

 

 

 

 

 

 

Figure 8. Examples of RNA analyzed by gel electrophoresis.  Gels included 1% agarose 

in TAE and were run for approximately 20 minutes at 120V.  (A) The in vitro 

transcription reaction for Cx31L209F was successful, generating about 1 µg/µl of RNA.   

(B)  To assess the relationship between RNA and physiological effects of L209F, RNA 

was diluted.  Diluting the RNA 250 CONTROL by half resulted in a decrease in band 

intensity (RNA 250 diluted to 125 ng/µl) which correlated well with the intensity of 

L209F (125 ng/µl).  The subsequent dilution of L209F by one-half resulted in a further 

decrease in band intensity.     

ZipRuler RNA 250 
250 ng/µl 

RNA 250  
diluted 125 

ng/µl 

L209F 

125 ng/µl 
L209F 

68ng/µl 

 

 
 

  



32 
 

 Figure 9 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. The membrane protein topology prediction program TMHMM (Krogh et al., 

2001) was used to assess potential changes in insertion of the fourth transmembrane 

domain due to the L209F substitution in Cx31.  The program predicted that residues 188 

through 210 span the lipid bilayer in both wtCx31 and Cx31L209F.   
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Figure 10 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10.  Images of Xenopus oocytes expressing connexins. Photographs were 

obtained using a typical digital camera through the lens of a dissecting microscope.  

Oocytes are about 1 mm in diameter.  After injection with RNA encoding L209F, oocytes 

become turgid, the clear division between animal and vegetal pole was lost (center image, 

middle oocyte) and oocytes eventually progressed to bursting (right image). Once the 

oocytes burst the yolky cytoplasm is released into the surrounding media and often pools 

around the oocytes.   

 

 

 

 

Single Oocytes After Injection 

All alive  Some dead All dead 
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Figure 11 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11. Gap junction currents recorded from paired oocytes expressing Cx31 and 

several skin disease mutants. For the first five sets of currents, cells were clamped at -20 

mV and currents were recorded from this clamped cell while its partner was pulsed in 10 

mV increments to induce transjunctional voltages (Vj’s) between 100 mV and + 100 mV.  

In the last figure, recovery from inactivation was tested by repeatedly inducing a Vj of 

+100 mV for 4 seconds, followed by a variable recovery period and a short pulse to -100 

mV.   
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Figure 12 

 

 

 

 

 

Figure 12. Membrane currents recorded in single oocytes expressing skin disease 

mutations Cx31 L135V, Cx31C86S and Cx31 L209F and oligo injected oocytes as a 

negative control. Oocytes were continuously clamped at -40 mV and pulsed in 20 mV 

increments to -140 and +40 mV.   Voltage steps were 500 milliseconds in length and 

currents were measured at the end of the voltage pulse.   
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Figure 13 

 

 

 

 

Figure 13. Survival of single oocytes injected with RNA encoding Cx31 or Cx31L209F.  

Full strength ≈ 125 ng/µl;  ½ strength ≈  68 ng/µl;  ¼ strength ≈ 34 ng/µl.  
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Figure 14 

 

 

 

 

 

Figure 14.  The Cx31 mutation L209F induces oocyte death in a time- and concentration-

dependent manner. Oocytes were injected with either Cx31 RNA (125 ng/µl) or L209F 

FULL strength (125 ng/µl), HALF strength (68 ng/µl) or QUARTER strength (34 ng/µl).  

At each time point the number of surviving oocytes was counted and recorded.  
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Figure 15 

 

 

Figure 15.  Viability of oocytes expressing the Cx31 mutation L209F is enhanced by 

calcium and cobalt. Oocytes were injected with either Cx31 RNA (125 ng/µl) or L209F 

RNA (125 ng/µl).  Calcium (2 mM CaCl2) and cobalt (1 mM CoCl2) were added to the 

media immediately after injection.  At each time point the number of surviving oocytes 

was counted and recorded.  
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