State University of New York College at Buffalo - Buffalo State University

Digital Commons at Buffalo State

Applied Economics Theses

Economics and Finance

5-2017

Stock Market Wealth impact on Consumption Expenditure

Ramberto Jr. Sosa Cueto sosacur01@mail.buffalostate.edu

Advisor

Frederick Floss

First Reader

Frederick Floss

Second Reader

Theodore Byrley

Third Reader

Xingwang Qian

To learn more about the Economics and Finance Department and its educational programs, research, and resources, go to https://economics.buffalostate.edu/.

Recommended Citation

Sosa Cueto, Ramberto Jr., "Stock Market Wealth impact on Consumption Expenditure" (2017). *Applied Economics Theses*. 23.

https://digitalcommons.buffalostate.edu/economics_theses/23

Follow this and additional works at: https://digitalcommons.buffalostate.edu/economics_theses
Part of the Econometrics Commons, and the Macroeconomics Commons

State University of New York College at Buffalo Department of Economics and Finance

Stock Market Wealth impact on Consumption Expenditure

A Thesis in Economics and Finance

By

Ramberto Jr. Sosa Cueto

Submitted in Partial Fulfillment

Of the Requirements

For the Degree of

Master of Arts in Applied Economics
Spring 2017

Approved by:
Frederick Floss Ph.D.
Associate Professor of Economics
Chair of the Department of Economics and Finance
Chairperson of the Committee
Project Advisor

Kevin J. Miller, Ed.D. Interim Dean The Graduate School

© Copyright by Ramberto Jr. Sosa Cueto

Project Committee Signatory

Dates of Approval	
	Fred Floss, Ph.D Associate Professor, Economics and Finance, Chair of Committee Thesis Advisor
	Theodore F. Byrley, Ph.D Associate Professor, Economics and Finance, Committee member
	Xingwang Qian, Ph.D Associate Professor, Economics and Finance, Committee member
	Kevin J. Miller, Ed.D Interim Dean of the Graduate School

Abstract of Thesis

Stock Market Wealth Impact on Consumption Expenditure

The purpose of this thesis is to explain the role of the stock market in determining aggregate consumer behavior. Theoretically, the life-cycle hypothesis is the main link between consumption and wealth. Additionally, a household's corporate equities holdings form part of that wealth (a small proportion). However, stock market fluctuations account for a significant part of the variation in household wealth, because of the stock prices' volatility.

In regression models, the estimated relationship between consumption and wealth is commonly positive and statistically significant. The empirical evidence in this paper suggests that the relationship between consumption and wealth is positive and statistically significant. Also, the empirical evidence indicates that the relationship between wealth and the S&P500 is positive and statistically. However, the evidence does not show any direct relationship between aggregate consumer behavior and the S&P500. In other words, the stock market impact on consumption is only reflected through the changes aggregate wealth.

Table of Contents

1.	Introduction	1
2.	Literature Review	4
3.	Development of theoretical model	9
3.1.		
3.2.		
3.3.	Life-cycle hypothesis assumptions	13
4.	Specification of Econometric Model	14
4.1.		
4.2.		
4.3.	T	
4.4.		
4.5.		
5.	Data	
6.	Estimated Results, Documentation and Evaluation	
6.1	Unit root Tests for Stationarity	
6.2	Estimated Consumption Expenditure Model with 2SLS	
6.3	Estimated Model R-Square, Adjusted-R Square and F-Value	
6.4	Test for Overidentifying Restrictions	
6.5 6.6	Cointegration tests	
6.7	Serial Correlation Tests	
6.8	Multicollinearity Tests	
6.10		
6.11		
6.12		
7.	Conclusion	33
Bibl	liography	35
App	pendix A- Data Plots	37
Appendix B – Unit root tests		
	pendix C – Two-Stages Least Squares Estimation	
	pendix D – Test for Overidentifying Restrictions	
	pendix E – Cointegration Tests	
	pendix F – Normality Tests	
	•	
	pendix G –Serial Correlation Tests	
	pendix H – Multicollinearity Test	
App	pendix I – Alternative procedure: Seemingly unrelated regressions	54
App	pendix J- Autoregressive Error Mode I, Corrects for Serial Correlation	63
App	pendix K– Autoregressive Error Model 2, Corrects for Serial Correlation	67
App	oendix L – Estimated Model with Lags in GDP and S&P500	71
Ann	pendix M – Estimated Model with Median Age	76

1. Introduction

This paper estimates an empirical model of the United States consumer spending that links the personal consumption expenditure to the stock market fluctuations. Theoretically, the life-cycle hypothesis is the main link between consumption and wealth. According to the theory, private consumption depends on income and wealth. Additionally, a household's corporate equities holdings form part of that wealth (a small proportion). However, it seems that the stock market is important for consumption, but it is difficult to say to which degree. It has been extensively observed in the U.S. that changes in the consumption expenditure are related to fluctuations in national wealth. In regression models, the estimated relationship between consumption and wealth is commonly positive and statistically significant.

For instance, in the latter half of the 1990s, household wealth increased as a result of the significant increase in stock prices. The economic phenomena provoked much interest among economists and policymakers. Specifically, it involved measuring the degree of the stock market wealth's effect on consumption. To illustrate, the wealth's effect may have added an average 1 to 2% per year to the growth rate of real GDP in the second half of the 1990s.³ Further, other econometric estimations of private consumption as that covered in the Federal Reserve Board's FRB/US model (Brayton and Tinsley, 1996) widely estimate that each added extra dollar of stock market wealth raises the consumer spending by 3 to 5¢, with the effect rising steadily over several

¹ R. & Fischer, S. & Startz, R. Dornbusch, *Macroeconomics (International Edition)*, 9th ed. (Bostom: McGraw-Hill, 2004), 375.

² Case, Karl E.; Quigley, John M.; Shiller, Robert J., "Comparing Wealth Effects: The Stock Market Versus the Housing Market." *Berkeley Electronic Press* 5, no. 1 (2005): 1, accessed January 12, 2017, http://www.nber.org/papers/w8606.pdf.

³ Yash P. Mehra, "The Wealth Effect in Empirical Life-Cycle Aggregate Consumption Equations," *Federal Reserve Bank of Richmond Economic Quarterly* 87, no. 2 (2001): 46, 66, accessed September 10, 2016,https://www.richmondfed.org/media/richmondfedorg/publications/research/economic_quarterly/2001/spring/pdf/mehra.pdf.

years. The calculations suggest that the wealth-consumption relationship may explain most of the decline in the saving rate since the mid 1990s.⁴

Accordingly, the life-cycle model predicts that consumers spend more over their lifetimes in response to higher wealth. Understanding the response of consumer spending to changes in wealth is necessary for determining how stock market fluctuations affect the economy. Also, its relevance is directly related to the issue of retirement preparedness by today's labor force, and the theories of saving behavior.⁵

The main goal is to explore the causal relationship between private consumption and stock market fluctuations, starting with the theoretical framework of the life-cycle hypothesis. The main concern is the role of the stock market in determining aggregate consumer behavior. The second concern is to measure to which the stock market impacts household consumption. And thirdly, to test how the United States economy fits the hypothesis in question. The proposed model includes stock market-related variables and macroeconomic variables. Overall, the results will be summed up in a consumption expenditure model of the U.S. economy.

Incidentally, it is important to have in mind that an increase in consumer spending following a rise in share prices could be attributable to either of two reasons: first, stock prices may rise anticipating strong economic activity, including consumer spending. And second, the wealth effect; changes in share values changes consumptions by relaxing the resource constraints that household face. Our focus will be the second reason.⁶

⁴ Karen E. Dynan, Dean M. Maki and, "Does Stock Market Wealth Matter for Consumption?," Federal Reserve Board (2001): 1, accessed September 10, 2016, https://www.federalreserve.gov/pubs/feds/2001/200123/200123pap.pdf.

⁵ Martha Starr-McCluer, "Stock Market Wealth and Consumer Spending," *Finance and Economics Discussion Series, Board of Governors of the Federal Reserve System (U.S.)* 20 (1998): 1, accessed January 16, 2017, https://www.federalreserve.gov/pubs/feds/1998/199820/199820pap.pdf.

⁶ James M. Poterba, Andrew A. Samwick, Andrei Shleifer and Robert J. Shiller, "Stock Ownership Patterns, Stock Market Fluctuations, and Consumption," Brookings Papers on Economic Activity 1, no. 2 (1995): 295-372, accessed September 10, 2016, http://www.jstor.org/stable/2534614.

The stocks are an important household asset, but consumer wealth also includes money, government bonds, real estate and tangible assets. However, stock market fluctuations account for a significant part of the variation in household wealth, because stock prices are more volatile than aforementioned assets. Both the theory and the statistical evidence indicate that these fluctuations in wealth have a small but important effect on consumer spending.⁷

The structure of this paper goes as follows: section 2, a literature review of the works related to stock market wealth and consumption; section 3, a discussion of the theoretical model of the life-cycle hypothesis, and the consumption-wealth link; section 4, a specification of the econometric model; section 5, a discussion of the data; and last, section 6, estimated results and evaluation. Overall, we expect to find a significant relationship between consumer expenditure and the stock market, as implied in the life-cycle hypothesis.

⁷ C. Alan Garner, "Has the Stock Market Crash Reduced Consumer Spending?," *Economic Review* (1988): 3-16, accessed January 12,

^{2017,} https://www.kansascityfed.org/PUBLICAT/ECONREV/EconRevArchive/1988/2q88garn.pdf.

2. Literature Review

In short, the model which explains the role of wealth in consumption, the life-cycle hypothesis, dates back to Albert Ando and Franco Modigliani (1963).⁸ The theory emphasizes the fact that each person experiences an economic life-cycle. It focuses on the pattern of income, consumption and saving throughout an individual's life. ⁹

Within the framework, household consumption is a function of income and wealth. Additionally, the model is based on utility maximization. The marginal propensity to consume from the income is different than wealth. The theory implies that the marginal propensity to consume from income is high, while it is low from wealth. As a result, that wealth (as temporary income increases) is distributed equally over the remaining years of lifespan.¹⁰

A major assumption in the model is that most households choose a stable lifestyle. In other words, they do not save in a period to spend everything in the next period. They try to spend evenly over their life-cycle by borrowing in early age, saving during their working life and dissaving in retirement. Thus, an increase in wealth encourages households to spread its wealth gain over the rest of their life cycle. "Being wealthier, the person does not have to save as much of current income (decreasing saving) to provide for the future". ¹¹Accordingly, maximizing current and future utility. ¹²

o

⁸ Albert Ando and Franco Modigliani, "Permanent Income, Current Income, and Consumption: The 'Life Cycle' Hypothesis of Saving: Aggregate Implications and Tests," The American Economic Review 53, no. 1 (1963): 55-84, accessed September 10, 2016, http://www.jstor.org/stable/1817129.

⁹ Andrew B. Abel; Ben S. Bernanke and Dean Croushore. Macroeconomics (New York: Pearson Addison-Wesley, 2013, 164. ¹⁰ R. & Fischer, S. & Startz, R. Dornbusch, Macroeconomics (International Edition), 9th ed. (Bostom: McGraw-Hill, 2004), 364-365, 370. & Boone, L., C. Giorno and P. Richardson, "Stock Market Fluctuations and Consumption Behaviour: Some Recent Evidence," OECD Economics Department Working Papers 28 (1998): 1, accessed September 10, 2016, http://www.oecd-ilibrary.org/docserver/download/5lgsjhvj84xp.pdf?expires=1473537963&id=id&accname=guest&checksum=3566D3EE7B7FE4 AB76635C75AF1308FF.

Andrew B. Abel; Ben S. Bernanke and Dean Croushore. Macroeconomics (New York: Pearson Addison-Wesley, 2013, 163.
 R. & Fischer, S. & Startz, R. Dornbusch, Macroeconomics (International Edition), 9th ed. (Bostom: McGraw-Hill, 2004), 364-365, 370. & Boone, L., C. Giorno and P. Richardson, "Stock Market Fluctuations and Consumption Behaviour: Some Recent Evidence," OECD Economics Department Working Papers 28 (1998): 1, accessed September 10, 2016, http://www.oecd-

According to Ando and Modigliani (1963), the propensity to consume from wealth ranges from 4 to 8 percent in the US throughout the period of 1929-1959 excluding the years 1941-46 (World War II).¹³ Subsequent to Ando-Modigliani's (1963) work, is the FRB-MIT-PENN econometric model (Ando-Modigliani, 1969 and deLeew-Gramlich) which directly addresses the effect of stock valuation on consumption. The estimated model examines the relationship between consumer spending; current and past real disposable income; and several quarters lag on real net worth. The study concludes that there are statistically significant short-run impacts as a result of changes in net worth, including changes in stock market prices. Specifically, the regression for consumption services suggests that a \$1 billion decrease in net worth will result in an average decrease in consumption of \$0.039 billion over the succeeding year. 84 percent of the \$0.039 billion occurs in the first quarter.¹⁴

Robert Hall (1978) also agrees that wealth has a strong influence on consumption. Particularly, Hall's model explains consumption as a function of past consumption and past values of the Standard and Poor's comprehensive index of the prices of stocks. The results indicated that the stock prices significantly affect private spending. Particularly, his paper does not set up any structural relationships between consumption and the variable used to predict it. 15

Similarly, Poterba, Samwick, Shleifeer and Shiller (1995), summarize the time series relationship between stock price changes and later consumption fluctuations, for the period 1947-95. But, they do not find any significant effects of stock price fluctuations in the mix of luxury and

ilibrary.org/docserver/download/5lgsjhvj84xp.pdf?expires=1473537963&id=id&accname=guest&checksum=3566D3EE7B7FE4

AB76635C75AF1308FF.

13 Albert Ando and Franco Modigliani, "Permanent Income, Current Income, and Consumption: The 'Life Cycle' Hypothesis of Saving: Aggregate Implications and Tests," The American Economic Review 53, no. 1 (1963): 55-84, accessed September 10, 2016. http://www.istor.org/stable/1817129.

¹⁴ Robert H. Rasche, "Impact of the Stock Market On Private Demand," *The American Economic Review* 62, no. 1/2 (1972): 222, accessed January 16, 2017, http://www.jstor.org/stable/1821546.

¹⁵ Robert. E Hall, "Stochastic Implications of the Life Cycle-Permanent Income Hypothesis," The Journal of Political Economy 86, no. 6 (1978): 971, 984-985, accessed September 10, 2016, http://web.stanford.edu/~rehall/Stochastic-JPE-Dec-1978.pdf.

non-luxury consumption. Their evidence casts doubt on the short-run importance of wealth effects associated with stock price movements. They argue that consumption may respond gradually to increases in stock market wealth. Hence, a focus on fluctuations in consumption within a year of stock price movements does not capture these effects. Further, they do not find any evidence that changing patterns of share ownership have altered the relationship between stock price and fluctuations and consumption, even though such effects might be expected in some behavioral model of saving and consumption. Also, The analysis distinguishes between the wealth effect and a signaling effect where stock prices rise in expectation of output increases in the manner of leading indicator in economic activity or business cycle.

Likewise, Starr-McCluer (1998), asserts that in the 1990s the majority of stockholders reported no appreciable effect of stock prices on their spending or saving. Particularly, the paper is an analysis of the Michigan SRC Survey of Consumers, a national representative survey of U.S. households. Further, the study indicates that the distribution of spending is not as concentrated as the distribution of wealth. Specifically, in 1995, the households in the top 20 percent of the income distribution accounted for 37 percent of total spending.¹⁷

Granted that less than 30% of the households directly own corporate stocks, Poterba (2000), noted that given the highly skewed distribution of stock ownership, the wealth effects are likely limited for most households. Nonetheless, he argues that stock market fluctuation may provoke changes in consumer confidence, even among those who do not hold corporate equities.

-

¹⁶ James M. Poterba, Andrew A. Samwick, Andrei Shleifer and Robert J. Shiller, "Stock Ownership Patterns, Stock Market Fluctuations, and Consumption," Brookings Papers on Economic Activity 1, no. 2 (1995): 297, 335, 356, accessed September 10, 2016, http://www.jstor.org/stable/2534614.

Martha Starr-McCluer, "Stock Market Wealth and Consumer Spending," Finance and Economics Discussion Series, Board of Governors of the Federal Reserve System (U.S.) 20 (1998): 6,12, accessed January 16, 2017, https://www.federalreserve.gov/pubs/feds/1998/199820/199820pap.pdf.

However, such effect is difficult to measure. For example, the evidence suggests that the rising stock market contributed to rising consumer spending in the 1990s. Additionally, Poterba portrays the following: if we assume a 1% marginal propensity to consume from wealth, the post-1995 wealth accumulation could account for \$66 billion, or 1%, in consumer spending in 2000. Further, if 1\$ of additional wealth generates 3 cents of additional spending, the 1995 to 1999 increase in house net worth could account for a consumption increase equal to roughly 2.8% of the disposable income in early 2000. ¹⁸

Garner (1988), suggests that despite a skewed distribution of stock ownership, stock market fluctuations may affect consumer spending. It is possible that households with high net worth may reduce their spending in response to sharp drops in stock prices. For example, if a wealthy household holds most of its assets in corporate stocks, its net worth is significantly affected by the stock market volatility and thus the private spending. On the other hand, if a wealthy household holds most of their non-stock assets in real estate, unincorporated businesses, and collectibles, its wealth or net worth cannot be converted quickly into cash to pay for consumer purchases. Additionally, middle-income households may be affected indirectly by stock market fluctuations through pension plans and annuities. Garner argues that for all these reasons, it is possible that the wealth effect is important despite the high concentration of stock ownership. ¹⁹

According to Dynan and Maki's (2001) estimation, for households with reported securities less than \$100,000, a \$1 capital gain increases consumption by between 5 and 15¢, with the effect occurring gradually over a couple of years. More importantly, all the point estimates of the

_

¹⁸ James M. Poterba, "Stock Market Wealth and Consumption," Journal of Economic Perspective 14, no. 2 (2000): 100, 108, 116. accessed September 10, 2016, http://www-personal.umich.edu/~kathrynd/JEP.StockMarketWealthandConsumption.pdf.

Garner, C. Alan. "Has the Stock Market Crash Reduced Consumer Spending?" *Economic Review* (1988): 8-9. Accessed January 12, 2017. https://www.kansascityfed.org/PUBLICAT/ECONREV/EconRevArchive/1988/2q88garn.pdf.

marginal propensity to consume are statistically significant.²⁰ Similarly, Mehra (2001), indicates that the long-term marginal propensity to consume from equity wealth remained stable during the 1990s, with point estimates staying between 0.03 to 0.04. ²¹

Additionally other papers, such as Apergis and Miller (2006), focus on a different aspect of the stock market-consumption relationship. Their empirical study examines whether this wealth effect exhibits an asymmetric effect on consumption. The data used covers the quarterly data from 1957 to 2002 on personal consumption, consumer price index, and stock market capitalization. The results show that the stock market fluctuations asymmetrically affect real per capita consumption during the short-run adjustment process. When compared to good news shocks, bad news shocks have a greater effect on consumption, as much as 50%. In other words, bad news shocks have a greater impact on private spending than good news shocks.²²

In brief, the link between consumption and wealth has been extensively studied. A common issue is how to distinguish signaling from wealth effects. Also, the population shows a highly skewed distribution of stock ownership. This implies that the stock market affects the population asymmetrically. Although stock market movements may provoke changes in consumer confidence even among those who do not hold corporate equities. The analysis of the hypothesis has its limitations. Regardless, the present work tackles the problem with these issues in mind. To

_

²⁰ Karen E. Dynan, Dean M. Maki and, "Does Stock Market Wealth Matter for Consumption?" Federal Reserve Board (2001): 26, accessed September 10, 2016, https://www.federalreserve.gov/pubs/feds/2001/200123/200123pap.pdf.

^{26,} accessed September 10, 2016, https://www.federalreserve.gov/pubs/feds/2001/200123/200123pap.pdf.

Yash P. Mehra, "The Wealth Effect in Empirical Life-Cycle Aggregate Consumption Equations," *Federal Reserve Bank of Richmond Economic Quarterly* 87, no. 2 (2001): 47, accessed September 10, 2016, https://www.richmondfed.org/media/richmondfedorg/publications/research/economic quarterly/2001/spring/pdf/mehra.pdf.

²²Nicholas Apergis, and Stephen M. Miller, "Consumption asymmetry and the stock market: New evidence through a threshold adjustment model," Economics Letters 93, no. 3 (2006): 338,341, accessed January 12, 2017, http://dx.doi.org/10.1016/j.econlet.2006.06.002.

understand the analysis, this researcher has reviewed several papers on stock market wealth and consumption, but does not replicate any of the econometric models.

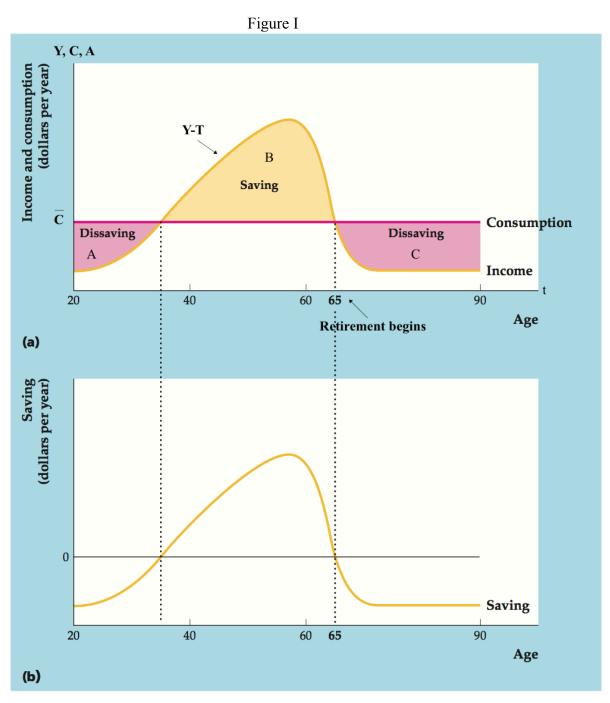
3. Development of theoretical model

3.1. Life-Cycle model

The life-cycle hypothesis stress on private consumption decisions as income evolves or changes during the life-cycle. For a start, the hypothesis considers that the individuals carefully plan the consumption and saving for a long period. Specifically, they attempt to distribute consumption evenly throughout their life time. Thus, to smooth consumption, individuals must save and dissave in their life-cycle.²³

Further, as described in "figure I" below, the *income (Y)* trajectory in early stages of the life-cycle is increasing until it reaches a maximum, then it decreases moderately until retirement, and finally, the *income* falls to "0" after the individual retires. "In the figure, the typical consumer's pattern of income and consumption are plotted against the consumer's age, from 20 (the about age of independence) to 90 (the about age of death)."²⁴

Initially, at the start of the life-cycle (area A), there is dissaving, since *income* is less than *Average Consumption* (\bar{C}). Later, the individual starts to earn higher incomes and start paying his debt (area B), and eventually, begins to accumulate net assets instead. Hence, at this point of the life-cycle, he accumulates wealth. This wealth is spent after retirement (area C). At the end, the


P, 2013, 164-165, PDF.

9

²³ R. & Fischer, S. & Startz, R. Dornbusch, Macroeconomics (International Edition), 9th ed. (Bostom: McGraw-Hill, 2004), 356.

²⁴ Andrew B. Abel, Ben S. Bernanke, and Dean Croushore. Macroeconomics: Student Value 9th Edition. Pearson College Div:

individual consumes all his savings and ends with "0" assets. Accordingly, if the interest rate is "0" or greater, area B is equal to the sum of area A and area C. 25

Andrew B. Abel, Ben S. Bernanke, and Dean Croushore. Macroeconomics: Student Value 9th Edition. Pearson College Div: P, 2013, 165, PDF.

²⁵ Andrew B. Abel, Ben S. Bernanke, and Dean Croushore. Macroeconomics: Student Value 9th Edition. Pearson College Div: P, 2013, 164-165, PDF.

3.2. Life-cycle Mathematical model

Mathematically, the life-cycle hypothesis consumption function has two variables: wealth, W, which grows as savings increases the assets stock or reduces the liabilities. And the lifelong expected income, Y, which is what a person expects to earn on average annually, over his life. The function will be:²⁶

$$C = \alpha Y + \beta W$$

Further, the hypothesis argues that the marginal propensity to consume (MPC) is different from the income and wealth. For instance, the MPC from the income is high, while the MPC from the wealth is low. In particular, wealth distributes equally over the remaining years of life. Hence, an increase in the stock market values will increase present and future consumption and reduce savings. Also, a transitory increase in income has the same effect as wealth.²⁷

To illustrate, let us assume the following numerical example: A person starts his life at the age of 20, he works until retirement at the age of 65, his age of death is 90 and his lifelong expected income, Y, is \$30.000. The available resources through his life are the Y (annual income) times the years he spends working (WL = 65 - 20 = 45): thus, the available resources in his life-cycle equals, \$1,350.00 (=\$30.000 x 45). Distributing it throughout his life time (NL = 90 - 20 = 70), the resources that he earns in his life-cycle allow him an annual consumption of C = \$1.350.000 / 70 = \$19,285.71. As a result, the general formula is 28

$$C = \frac{WL}{NL} * Y$$

Ernesto Screpanti and Stefano Zamagni, An Outline of the History of Economic Thought, 2nd ed. (Oxford: Oxford University Press, 2005), 329, accessed December 2, 2016, http://catdir.loc.gov/catdir/enhancements/fy0636/2005280602-d.html.
 R. & Fischer, S. & Startz, R. Dornbusch, Macroeconomics (International Edition), 9th ed. (Bostom: McGraw-Hill, 2004),

R. & Fischer, S. & Startz, R. Dornbusch, *Macroeconomics (International Edition)*, 9th ed. (Bostom: McGraw-Hill, 2004), 365

Then, the MPC out of income is WL/NL. Alternatively, the marginal propensities to consume are calculated by examining the variations in the income. For example, assume that the annual income increases by \$3,000 permanently. The \$3,000 multiplied by the 45 years of labor and distributed throughout the 70 years of life, increases the annual consumption in \$3,000 x (45/70) = \$1,928.57. This means that the MPC for the income is equal to WL/NL = 45/70. ²⁹

On the other hand, now assume a temporary increase in income. In particular, the income increases by \$3,000, but the increase only lasts for one year. The \$3,000 scattered throughout the 70 years of the life span will increase the annual consumption by \$3,000 x (1/70) = \$42.86. That is, the MPC out of a transitory increase of income is 1/NL = 1/70. The example indicates that the MPC out of income is high, while from the wealth is low, given that the MPC of the wealth is equal to the MPC of the transitory income.³⁰

_

²⁹ R. & Fischer, S. & Startz, R. Dornbusch, *Macroeconomics (International Edition)*, 9th ed. (Bostom: McGraw-Hill, 2004), 365

³⁰ R. & Fischer, S. & Startz, R. Dornbusch, *Macroeconomics (International Edition)*, 9th ed. (Bostom: McGraw-Hill, 2004), 365

3.3. Life-cycle hypothesis assumptions

Overall, the aggregate consumption function follows some assumptions in respect to the individual's utility function, the age structure of the population and life pattern of earnings. The basic assumptions are:³¹

- I. The individual distributes every additional resource evenly through his life span, in the same way, he initially allocated his resources. In other words, "The utility function is homogeneous with respect to consumption at different points in time."
- II. The individual does not receive or leave any bequest.
- III. At any age, the consumer attempts to consume his total income and wealth evenly over the rest of his life-cycle.
- IV. "Every age group within an earning span has the same average income in any given year. In a given year, any age group will have the same average expected income for any later period within their earning span. Every household has the same total life and earnings spans."
- V. Lastly, the individual expects the rate of return on assets to stay constant.

Additionally, our concern is the effect of the stock market wealth on private consumption. But, the life-cycle hypothesis refers to the consumption of nondurable goods and services. The nondurable goods refer to items that report us pleasure at the time of purchase of short-lived items, such as food and cloth. While durable goods are long-lived items such as apartments, automobiles etc. The theory concerned with durable goods and services is the theory of investment applied to

13

³¹ Albert Ando and Franco Modigliani, "Permanent Income, Current Income, and Consumption: The 'Life Cycle' Hypothesis of Saving: Aggregate Implications and Tests," The American Economic Review 53, no. 1 (1963): 56, 59, accessed September 10, 2016, http://www.jstor.org/stable/1817129.

the household instead of firms. Further, one must distinguish between stock market wealth and non-stock market wealth for the purpose of the hypothesis in question.³²

4. Specification of Econometric Model

4.1. Two-Stage Least Squares Estimation

In the life-cycle hypothesis theoretical framework, consumption is a function of income and wealth. But, to explain the changes in consumption with respect to the fluctuations in the stock market one may add an extra equation. Due to this, the single equation model becomes a simultaneous equation model. Overall, the least squares estimators are not used to estimate an equation in a simultaneous equations model.

Instead, the two-stage least squares (2SLS) is the method widely used for estimating the parameters of an identified structural equation. And it is useful because the least squares estimator of parameters in a structural simultaneous equation is biased and inconsistent. Due to the correlation between the random error and the endogenous variables on the right-hand side of the equation.³³

The simultaneous equation model used to estimate the relationship between the consumption and the stock market fluctuations, is expressed in the following population regression functions:

$$C_t = \alpha_1(W_t) + u_t$$

$$W_t = \beta_1(Y_t) + \beta_2(SP500_t) + v_t$$

³² R. & Fischer, S. & Startz, R. Dornbusch, *Macroeconomics (International Edition)*, 9th ed. (Bostom: McGraw-Hill, 2004), 368.

³³ R Carter Hill, William E. Griffiths, and G C. Lim, *Principles of Econometrics*, 4th ed. (Hoboken, NJ: Wiley, ©2011), 450, 452.

Where:

 C_t : the consumption growth of non-durable goods and services in the period t.

SP500_t: The rate of return of the Standard & Poor's 500 in period t.

 Y_t : The Gross Domestic Product growth in period t.

 W_t : The percentage change of net worth in period t.

 α_1 : The elasticity of C with respect to W.

 β_1 : The elasticity of W respect to Y.

 β_2 : The elasticity of W respect to SP500.

 u_t : Error term in first equation.

 v_t : Error term in second equation.

In the first equation, the model indicates that the *consumption growth* in period t (dependent variable) is a function of *the percentage change of wealth* in period t (independent variable). In the second equation, the model indicates that *the percentage change of wealth* (dependent variable) in period t, is explained by the *GDP growth*, and the *rate of return of the Standard & Poor's 500* (independent variables) in period t.

4.2. The Two-stage Least Squares Estimation Procedure

The two-stage least squares estimation procedure is used to estimate the parameters of any identified equation within a simultaneous equation system. In this case, the first structural equation within the system is³⁴

$$C_t = \alpha_1(W_t) + u_t$$

If this equation is identified, then its parameters can be estimated in two steps:

1. Estimate the parameters of the reduced-form equation

$$W_t = \beta_1(Y_t) + \beta_2(SP500_t) + v_t$$

by least squares and obtain the predicted values

$$\widehat{W}_t = \widehat{\beta_1}(Y_t) + \widehat{\beta_2}(SP500_t)$$

2. Replace the variable, W_t , on the right-hand side of the first equation by the predicted values from the second equation

$$C_t = \alpha_1 \big(\widehat{W}_t \big) + u_t$$

The last step is to estimate the parameters of the above equation by least squares.

In the simultaneous equation system, the variables Y and SP500 are instrumental variables (IVs). And the variable W is an endogenous variable. In general, an instrumental variable must satisfy two conditions:

- (1) Relevance: $Cov(z, x) \neq 0$, the instrumental variable is correlated with the endogenous variable
- (2) Exogeneity: $Cov(z, \varepsilon) = 0$ the instrumental variable is uncorrelated with the disturbances.

On the other hand, an endogenous variable is one that is correlated with the error term, $Cov(x, e) \neq 0$.

 $^{^{34}}$ R Carter Hill, William E. Griffiths, and G C. Lim, *Principles of Econometrics*, 4th ed. (Hoboken, NJ: Wiley, ©2011), 453-454.

4.3. The Properties of the Two-Stage Least Squares Estimator

The properties of the 2SLS estimator are summarized as follows:³⁵

- 1. The estimator is consistent, but a biased estimator.
- 2. It is approximately normally distributed in large samples.
- 3. The variances and covariances of the estimator are unknown in small samples, but for large samples, there are expressions that are used as approximations. Overall, the standard error and the t-values are reported just like an ordinary least square (OLS) regression.
- 4. If 2SLS estimates are obtained by applying two least squares regressions using OLS regression software, the standard errors and t-values reported in the second regression are not correct for the 2SLS estimator. A specialized 2SLS or instrumental variable software is necessary for obtaining estimates of structural equations.

4.4. Expected Signs of the Coefficients

In our system of equations, we expect the following:

$$C_t = f[(+)W_t]$$

$$W_t = f[(+)Y_t, (+)SP500]$$

In the first equation, we expect a positive relationship. If the household wealth increases, the consumption increases. Accordingly, the life-cycle hypothesis states that the marginal propensity to consume from wealth is positive.

In the second equation, we expect a positive correlation between the GDP and the household wealth. In general, wealth is the excess of total assets over total liabilities. And the wealth is correlated with the income trajectory in the life-cycle hypothesis. On the other hand, the

 $^{^{35}}$ R Carter Hill, William E. Griffiths, and G C. Lim, *Principles of Econometrics*, 4th ed. (Hoboken, NJ: Wiley, ©2011), 452-453.

wealth and the S&P500 are positively related. In fact, the household corporate equities holdings form part of the wealth. Being that, all the fluctuations in the stock market are reflected in the wealth.

Additionally, the 2SLS estimators are only consistent if the instrumental variables, GDP and S&P500, are highly correlated with the endogenous variable, wealth. Otherwise, the whole model forecast is inconsistent. In other words, the estimates do not converge in probability to the true value.

4.5. Hypothesis test

The hypothesis test for sample regression functions goes as follows:

$$C_t = \hat{\alpha}_1(\widehat{W}_t) + \hat{u}_t$$

 $H_0:\widehat{\alpha_1} \leq 0$, case it is not statistically significant.

 $H_1:\widehat{\alpha_1}>0$, case it is statistically significant.

$$\widehat{W}_t = \widehat{\beta_1}(Y_t) + \widehat{\beta_2}(SP500_t)$$

 $H_0:\widehat{\beta_1} \leq 0$, case it is not statistically significant.

 $H_1:\widehat{\beta_1}>0$, case it is statistically y significant.

 $H_0: \widehat{\beta_2} \leq 0$, case it is not statistically significant.

 $H_1:\widehat{\beta_2}>0$, case it is statistically significant.

The $\hat{\alpha}_1$ is the estimated elasticity of C with respect to W. If $\hat{\alpha}_1$ is statistically significant, it means that there is evidence that wealth impacts the consumption of non-durable goods and services in the given sample. If it is not statistically significant, we cannot accept the alternative hypothesis, that wealth positively affects private consumption. Further, we expect $\hat{\alpha}_1$ to be statistically significant.

Similarly, $\widehat{\beta_1}$ is the estimated elasticity of W with respect to Y. And $\widehat{\beta_2}$ is the estimated elasticity of W with respect to SP500. If $\widehat{\beta_1}$ is statistically significant, it implies that GDP positively impacts Wealth for the given sample. And if $\widehat{\beta_2}$ is statistically significant it means that S&P500 positively affects Wealth for the period range.

One expects the structural model estimators to be statistically significant at a confidence level of 95%. Hence, the hypothesis test for the estimators will be based on a p-value of 5 %. Consequently, for the results to be statistically significant, the p-value must be less than 5%. Due to this, the chance of committing a Type-I error will be 5%.

5. Data

In particular, the data was compiled from several sources. The source of the data for GDP and consumption is from the Bureau of Economic Analysis; the data source of wealth is the Federal Reserve Statistical release on Financial Accounts; lastly, the data for the S&P500 was extracted from Yahoo! Finance. Also, the time period is 1985:01-2016:01, quarterly data.

For start, the data arrayed for the GDP growth have the following specifications: It is the percentage change in the GDP. The GDP values were initially expressed in billions of chained (2009) dollars, seasonally adjusted at annual rates.

Similarly, the data for the consumption growth have the following specifications: it is the percentage change in the consumption expenditure of non-durable goods and services. Initially, the values were billions of chained (2009) dollars, seasonally adjusted at annual rates.

Also, the data for wealth is in terms of percentage change. The data was deflated using the deflator for consumption expenditure and transformed into billions of chained (2009) dollars, seasonally adjusted at annual rates. And lastly, it was calculated in terms of growth rate.

Lastly, the data on the S&P500 returns went through two steps: the monthly returns were estimated using the monthly adjusted close price. And second, the average quarterly returns were calculated using the estimated monthly returns. (Variables plot, Appendix A)

6. Estimated Results, Documentation and Evaluation

6.1 Unit root Tests for Stationarity

The main reason we prefer stationary time series variables in the regression analysis is to avoid any significant results from unrelated data, in other words, a spurious regression. Formally, a time series is stationary if its mean and variance are constant over time, and if the covariance between two values from the series depends only on the length of time separating the two values.³⁶

A test for determining whether a series is stationary is the Augmented-Dickey-Fuller test. With regard to an AR(1) model ' $\Delta y_t = (\rho - 1)y_{t-1} + v_t$ ', one way to test stationarity is to test H₀: $\rho = 1$, nonstationary process, against the alternative H₁: $\rho < 1$, stationary process.³⁷ In particular, the variables in our consumption expenditure model are tested using the Phillips-Perron test. The test is automatically carried out assuming three possible scenarios: no constant and no trend (Zero Mean), constant and no trend (Single Mean), and both constant and trend (Trend). SAS computes two alternative test statistics, Rho and Tau, and their p-values. The Phillips-Perron test statistics have the same asymptotic distributions as the corresponding ADF tests.³⁸

The overall results show that the test statistics are less than the critical values at 5% level significance. In other words, the time series in the simultaneous equation model are stationary. Therefore, a spurious regression is less likely. (Unit root tests, Appendix B)

³⁶ R Carter Hill, William E. Griffiths, and G C. Lim, *Principles of Econometrics*, 4th ed. (Hoboken, NJ: Wiley, ©2011), 482,

R Carter Hill and Randall C. Campbell, Using Sas for Econometrics (New York: Wiley, ©2012), 378.

³⁸ R Carter Hill and Randall C. Campbell, Using Sas for Econometrics (New York: Wiley, ©2012), 381.

6.2 Estimated Consumption Expenditure Model with 2SLS

According to SAS, the estimated structural simultaneous model using the two-stage least squares estimation procedure is the following:

First-stage regression, reduced-form estimates:

$$\widehat{W}_{t} = 0.653190(Y_{t}) + 0.653965(SP500_{t})$$

$$se(\widehat{\beta_{t}}) = (0.121231) \qquad (0.038549)$$

$$t = (5.39) \qquad (16.96)$$

$$Pr > |t| = (<.0001) \qquad (<.0001)$$

$$R - square = 0.78470 \qquad n = 125 \quad F - value = 224.15 \quad adj R - square = 0.78120$$

Second-stage regression, estimated Consumption Expenditure model:

$$\hat{C}_{t} = 0.188180(\hat{W}_{t})$$

$$se(\hat{\beta}_{t}) = (0.028055)$$

$$t = (6.71)$$

$$Pr > |t| = (<.0001)$$

$$R - square = 0.26624 \quad n = 125 \quad F - value = 44.99 \quad adj \quad R - square = 0.26032$$

The results indicate that all the estimated slope coefficients are statistically significant under the alternative hypothesis. In other words, the p-values (Pr>|t|) are less than 5% significance level. The p-value is calculated using the t-statistic. The t-statistic is calculated using the standard errors. The standard error $se(\widehat{\beta_t})$ is a measure of precision. Thus, the smaller the values of $se(\widehat{\beta_t})$ the more accurate the estimation.

Further, the 2SLS parameter estimates predict the following:

First-stage regression (1):

- 1. The elasticity of wealth, with respect to GDP is 0.6532; for each 1 percent growth in the US GDP, US Wealth increases by 0.6532%.
- 2. The elasticity of wealth, with respect to S&P500 is 0.6540; for each 1 percent increase in the S&P 500 rate of return, national wealth increases by 0.6540%.

Second Stage regression (2):

1. The elasticity of the consumption of non-durable goods and services with respect to wealth is 0.1882; for each 1 percent growth in national wealth, the US consumption of non-durable goods and services increases by 0.1882%.

The estimated model suggests that the stock market fluctuations account for a significant part of the variation in household wealth. That wealth has a significant impact on aggregate consumer behavior. In other words, the 2SLS estimates suggest a link between the consumption expenditure and the stock market through the wealth effect. Also, the estimated model shows that the GDP have a greater impact on consumption than the wealth.

With regard to the theory, the estimated consumption expenditure model agrees that changes in share prices impact consumption by relaxing the resource constraints that households face. Because the stock prices are volatile, they have an important impact on national wealth. Further, the statistical evidence indicates that the fluctuations in the S&P500 affect consumer spending through wealth.

6.3 Estimated Model R-Square, Adjusted-R Square and F-Value

In the first stage regression, the adjusted coefficient of determination for the estimated wealth model is 0.78120. This means the estimated model explains most of the variation in the percentage change of wealth. Also, the estimated F-value, 224.15, is greater than the critical value of F_{0.05(123, 125)}, 1.34. Thus, the Adj. R-square is significant at a 5% significance level. ³⁹ Both Adj. R-square and R-square give an idea of the goodness of fit of the estimated model. But, the R-square assumes that every single variable explains the variation in the dependent variable. While the Adj. R-square adjusts for the number of terms in a model, if a useless variable is added, the Adj. R-square will decrease. In contrast, if a more useful variable is added, the Adj. R-square will increase.

In particular, in the first stage regression of a 2SLS the F-test is important. For instance, it measures the strength of the instruments. The instruments are the independent variables used to estimate wealth: GDP growth rate and S&P500 rate of return. Overall, weak instruments tend to bias towards the ordinary least square estimates. Due to this, it is preferable for the Adj. R-square to be statistically significant. This implies that the instruments are valid.

In the second stage regression, the coefficient of determination for the estimated model is 0.26032. This means the estimated model explains about 26.032 percent of the variation in the consumption growth. In contrast to the first stage regression, the estimated model uses the R-square because it has a single explanatory variable.

(2SLS estimations, <u>Appendix C</u>)

³⁹ Specifically with the F-value we tested the following hypothesis: $H_0: \beta_1 = \beta_2 = \beta_3 = \beta_4 = 0$, case it is not statistically significant. $H_1:$ Otherwise, case it is statistically significant.

24

6.4 Test for Overidentifying Restrictions

In general, a model is over-identified when the number of instruments exceeds the number of endogenous variables. In our simultaneous equation system, we have two instrumental variables (IVs), Y and SP500, for W. Due to this, the simultaneous equation system has one overidentifying restriction. Specifically, the Test for Overidentifying Restrictions is used to test the validity of the IVs.

To test the Overidentifying restrictions, SAS applies the likelihood ratio test of the joint significance of these instrumental variables. The null hypothesis is that the predetermined variables that do not appear in any equation have zero coefficients. The alternative hypothesis is that at least one of the assumed zero coefficients is nonzero. Rejecting the alternative hypothesis raises doubts about the validity of the instruments, Y and SP500. According to the results, the p-value is below the 5% critical value. This means that the instrumental variables are statistically significant; the overidentifying restrictions are valid. (Test for Overidentifying Restrictions, Appendix D)

6.5 Cointegration tests

Nonstationary time series are cointegrated if they tend to move together through time. This implies that there is a long-run relationship between dependent and independent variables. Conversely, non-cointegrated time series are subject to a spurious regression. A linear combination to examine the cointegration is the least squares residuals ($\hat{e} = Y - X\hat{\beta}_i$). Testing cointegration involves regressing one I (1) variable on another using OLS. The null hypothesis is that the residuals are nonstationary. The test for stationarity is based on the equation $\Delta \hat{e}_t = \gamma \hat{e}_t + v_t$.

In SAS, one may use the Phillips-Perron test on the residuals to check cointegration. The test is run assuming three possible scenarios: no constant and no trend (Zero Mean), constant and

 $^{^{40}}$ R Carter Hill and Randall C. Campbell, Using Sas for Econometrics (New York: Wiley, ©2012), 385-386.

no trend (Single Mean), and both constant and trend (Trend). SAS computes two alternative test statistics, Rho and Tau, and their p-values.⁴¹

The results show that the test statistics are less than the critical values at 5% level significance. In other words, it suggests that the model's residuals for both regressions are stationary. Consequently, the regressions are not spurious. (Cointegration tests, Appendix E)

6.6 Normality Tests

In the regression analysis, the normality in the residual enables us to derive reliable probability distributions of the estimated parameters and the estimated standard error. This simplifies the task of establishing confidence intervals and testing hypotheses. In other words, if the residuals are not normally distributed, the hypothesis test is unreliable. ⁴² Specifically, the tests run in this paper are the Shapiro-Wilk, Kolmogorov-Smirnov, Cramer-von Mises, and Anderson-Darling.

The tests for normality in our analysis show all the p-values are above 0.05. Hence, we accept the null hypothesis of normality. The normality test suggests that the 2SLS estimators are consistent. Since the variances and covariances of the estimators are known in the sample, the standard errors and the t-values are reported like an ordinary least square (OLS). (Normality tests, Appendix F)

⁴² Damodar N. Gujarati and Dawn C. Porter, Basic Econometrics, 4th ed., The Mcgraw-Hill Series, Economics (Boston: McGraw-Hill Irwin, ©2004), 112.

⁴¹ R Carter Hill and Randall C. Campbell, Using Sas for Econometrics (New York: Wiley, ©2012), 381.

6.7 Serial Correlation Tests

Serial correlation refers to the Gauss-Markov theorem assumption, $cov(e_t, e_s) = 0$ (for t different that s). For instance, when the assumption is not satisfied, the OLS parameter estimates of the partial regression coefficients are not biased, but the OLS no longer is minimum variance, and the hypothesis test is unreliable. Similarly, in the 2SLS, serial correlation implies that the hypothesis test is unreliable.

To test serial correlation the Durbin-Watson test (DW test). The DW test for serial correlation is based on the following: The null hypothesis is "no positive autocorrelation", and we reject if " $0 < d < d_L$ ". For instance, the results show d=1.32035 and d=0.822187 for the first-stage and the second-stage regressions, while the Durbin-Watson critical value-95% is about 1.64. Hence, there is evidence of positive serial correlation. As a result, the hypothesis test is unreliable. (Serial Correlation tests, Appendix G)

6.8 Multicollinearity Tests

Another important assumption in the classical regression model is no perfect multicollinearity. In other words, there are no perfect linear relationships among explanatory variables. ⁴³ The result for multicollinearity is as follows: there are no biased OLS estimators, but the separate effects of the estimates are not reliable; even more, there are high standard errors and low t-scores. A possible solution is to drop redundant variables, but to drop others might introduce bias. Thus, doing nothing is often the best. The multicollinearity test is only applicable to multiple regression models. Consequently, the test is used in the first-stage regression alone.

-

⁴³ Damodar N. Gujarati and Dawn C. Porter, Basic Econometrics, 4th ed., The Mcgraw-Hill Series, Economics (Boston: McGraw-Hill Irwin, ©2004), 75.

In the calculated pairwise multicollinearity correlation matrix, none of the calculated correlation coefficients (or estimates) exceed 0.8, suggesting that multicollinearity is unlikely. 44 Additionally, between the parameter estimates, the calculated tolerance is greater than 0.2 and the variance inflation less than 5. This means that interactive multicollinearity is also unlikely. (Multicollinearity test, Appendix H)

6.10 Alternative Procedure: Seemingly Unrelated Regressions (SUR)

Given the estimated model exhibits correlation, the 2SLS standard errors are not consistent. However, in a multivariate regression model, when the residuals are serially correlated the efficiency of the estimation can improve by taking these cross-equation correlations into account. Hence, one can use the SUR.

The SUR is a generalization of OLS for multi-equation systems. Unlike the 2SLS, the SUR procedure assumes that all the regressors are exogenous variables. Further, it uses the correlations among the errors in different equations to improve the estimates. The method produces the same results as OLS unless the model has at least one regressor not used in the other equations.

According to SAS, the estimated structural simultaneous model using the seemingly unrelated regressions procedure is the following:

The estimated wealth model:

$$\begin{split} \widehat{W}_t &= 0.805408(Y_t) + 0.6625043(SP500_t) \\ se(\widehat{\beta_l}) &= (0.119991) & (0.038343) \\ t &= (6.71) & (16.30) \\ Pr &> |t| = (<.0001) & (<.0001) \\ System\ Weighted\ R - square = 0.6944 & n = 125 \end{split}$$

4

⁴⁴ According to the rule of thumb: if the correlation coefficient between any two independent variables is above 0.8, multicollinearity is likely present.

The estimated consumption model:

```
\hat{C}_t = 0.180124(W_t)
se(\widehat{\beta_t}) = (0.024686)
t = (7.30)
Pr > |t| = (<.0001)
System Weighted R - square = 0.6944 n = 125
```

According to the SUR procedure run in SAS, the estimators for the structural simultaneous equation are statistically significant. The system weighted R-Square in 69.44%. This means the estimated model explains most of the joint variation in wealth and consumption. Overall, the purpose of the SUR procedure is to improve the efficiency of the estimation when the residuals are serially correlated. In other words, it does not solve the serial correlation. Accordingly, both regressions still have serial correlation. The DW test estimates a d=1.357759 and d=0.599537, for the first and second model, while the Durbin-Watson critical value-95% is about 1.64. Hence, there is evidence of positive serial correlation.

Further, the SUR estimated standard errors are smaller when compared to the earlier 2SLS estimates. This suggests that the estimated slopes are more precise. Further, *the normality tests* show all p-values are above 0.05. Hence, we accept the null hypothesis of normality, being that SUR estimators are consistent. Additionally, the correlations of parameter estimates do not exceed 0.8, suggesting that multicollinearity is unlikely.

Additionally, the forecast of the parameters is different. For instance, the SUR parameter estimates predict the following:

The estimated wealth model:

- 1. The elasticity of wealth, with respect to GDP is 0.8054; for each 1 percent growth in the US GDP, US Wealth increases by 0.8052%.
- 2. The elasticity of wealth, with respect to S&P500 is 0.6250; for each 1 percent increase in the S&P 500 rate of return, national wealth increases by 0.6250%.

The estimated consumption model:

2. The elasticity of the consumption of non-durable goods and services with respect to wealth is 0.1801; for each 1 percent growth in the national wealth, US consumption of non-durable goods and services increases by 0.1801%.

Similarly, to the 2SLS estimators, the SUR estimators suggest a link between the consumption expenditure and the stock market through the wealth effect. However, the estimated elasticity of the consumption of non-durable goods and services with respect to wealth is less when compared to the 2SLS estimate. Likewise, the estimated elasticity of wealth with respect to \$\$8P500\$ is less than the 2SLS estimate.

However, both the 2SLS and SUR procedures are serially correlated. Due to this neither of the estimated models are good for policy purposes or to precisely forecast the consumption phenomenon of the wealth effect. But, by estimating the multi-equation systems with both methods, one checks whether the estimated parameters are statistically significant. Further, it is a way to see if the properties of the model remain the same. For instance, both estimates suggest a link between the stock market and consumption. (SUR Estimates, Appendix I)

6.11 Autoregressive Error Model Corrects for Serial Correlation

The autoregressive error model is used to correct for serial correlation. Given there is serial correlation one may use the AUTOREG procedure in SAS to further study the causal relationship between consumption expenditure and wealth, and even more the direct impact of the S&P500 in the consumer spending. However, the autoregressive error model is not applicable to structural simultaneous equations. Regardless, it is possible to use the Yule-Walker estimates to directly measure the effect of wealth in consumption, and the impact of GDP growth and S&P500 in consumption. In this way, it is possible to see if the S&P 500 have a direct impact on consumption growth. Also, the elasticity of consumption vs GDP and Consumption vs Wealth can be separately estimated and compared.

According to SAS, the estimated models using Yule-Walker estimates are the following: The estimated consumption model, with wealth as regressor:

```
\hat{C}_{t} = 0.0284(W_{t})
se(\widehat{\beta_{t}}) = (0.0134)
t = (2.11)
Pr > |t| = (<.0367)
R - square = 0.8248 \quad n = 125
```

The estimated consumption model, with GDP and S&P500 as regressors:

```
\begin{split} \hat{C}_t &= 0.5400(Y_t) + 0.000639(SP500_t) \\ se(\widehat{\beta_t}) &= (0.0500) & (0.0121) \\ t &= (10.80) & (0.05) \\ Pr &> |t| = (<.0001) & (<0.9581) \\ R - square &= 0.7807 & n = 125 \end{split}
```

The first model, consumption regressed on wealth, indicates that *for each 1 percent of growth in national wealth, US consumption of non-durable goods and services increases by 0.0284%*. Additionally, the estimate parameter is statistically significant, and the model explains about 80% of the variation in consumption. In contrast to the earlier estimates, the impact of wealth

is much less.

The second model, consumption regressed on GDP and S&P500, indicates that *for each 1* percent of growth in US GDP, the US consumption of non-durable goods and services increases by 0.5400%. Also, it indicates that the S&P500 does not affect the consumption. Further, the elasticity of consumption with respect to GDP is statistically significant. On the other hand, the elasticity of consumption with respect to S&P500 is not statistically significant. Overall, the results imply that for the given sample there is not evidence that the S&P500 has any impact on consumption. However, there is evidence that wealth and GDP impacts consumption, as the theory suggests. It is possible that the stock market impact on consumption is only reflected through the wealth, since most of the U.S. population does not own stocks there is not a direct impact.

In brief, Yule-Walker estimates suggest the following: The S&P500 do not affect consumption, and that the elasticity of consumption respect to GDP is greater than the elasticity of consumption respect to wealth. The results agree with the theory that the marginal propensity to consume from income is high, while it is low from wealth. (Yule-Walker Estimates, Appendix J and Appendix K)

6.12 Additional Estimations and Models

Additionally, using annual sample data for the period 1953-2015, we ran on SAS models which included median age, and lags in GDP and S&P500 for the purpose of observing the impact of age on wealth, and improving the estimated model. According to the life-cycle hypothesis wealth and age are closely related. However, such impact is difficult to observe at an aggregate level. Overall, median age was not statistically significant when estimating wealth, neither the lag values of GDP and S&P500. (Estimated models, Appendix L and Appendix M)

7. Conclusion

In summary, the life-cycle hypothesis is the main link between consumption and wealth. Within the framework, the household consumption is a function of income and wealth. Additionally, the corporate equities are part of that wealth. Due to this, one may use the life-cycle hypothesis to analyze the effects of stock market wealth in consumption expenditure. However, there are limitations in the analysis. For instance, an issue is how do we distinguish signaling from wealth effects? Also, there is a highly skewed distribution of stock ownership. This implies that the stock market affects asymmetrically the population.

In regard to the estimated structural simultaneous model, all the point estimates are statistically significant. Even more, it estimates that for each 1 percent of growth in the US GDP, the US Wealth increases by 0.6532%; further, it forecasts that for each 1 percent increase in the S&P500 rate of return, the national wealth increases by 0.6540%.; and that for each 1 percent of growth in the national wealth, the US consumption of non-durable goods and services increases by 0.1882%.

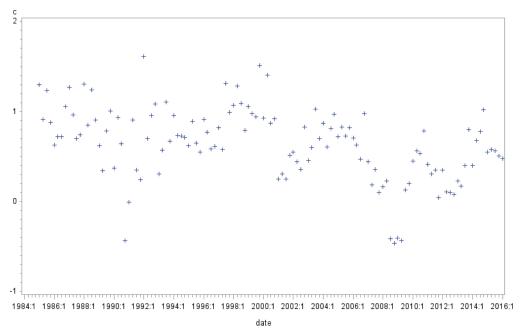
Accordingly, the 2SLS estimated model suggests a link between the consumption expenditure and the stock market through the wealth effect. The estimated consumption expenditure model agrees that changes in share prices impact consumptions by relaxing the resource constraints that the economy faces. Because the stock prices are volatile they have an important impact on the national wealth.

However, the estimated model has serial correlation. Which means that the standard errors are not correct. Consequently, the hypothesis test is unreliable, being that the estimated model cannot be used for policy purposes or to predict the consumption phenomenon of the wealth effect. Nonetheless, the autoregressive error model is used to correct for serial correlation. However, the

autoregressive error model is not applicable to structural simultaneous equations. Due to this, the results are not interpreted as in the case of 2SLS. Overall, the Yule-Walker estimates suggest that The S&P500 do not affect consumption and that the elasticity of consumption respect to GDP is greater than the elasticity of consumption respect to wealth.

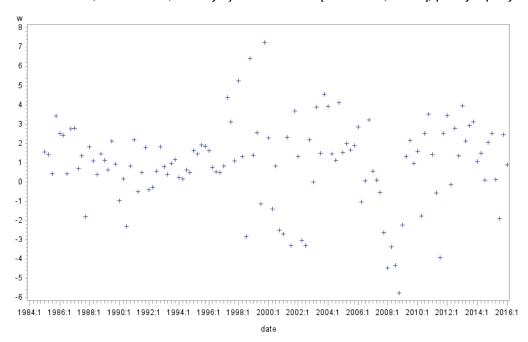
In general, all the methods and models used in this paper indicates that the stock market impact on consumption is only reflected through the wealth. Further, they agree with the theory that the marginal propensity to consume from income is high, while it is low from wealth. Lastly, in future papers, one may consider using other estimation methods that directly correct the serial correlation. And so, improve the efficiency of the estimation.

Bibliography

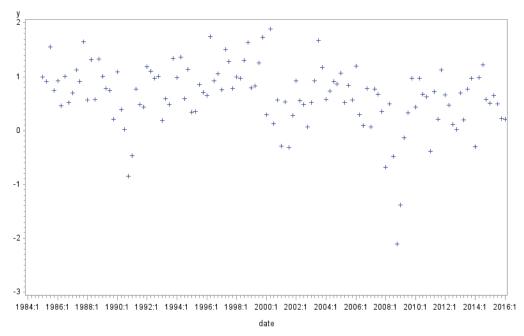

- Abel, Andrew B.; Bernanke, Ben S. and Croushore, Dean. *Macroeconomics*: Student Value 9th Edition. Pearson College Div: P, 2013
- Ando, Albert and Modigliani, Franco. "Permanent Income, Current Income, and Consumption: The 'Life Cycle' Hypothesis of Saving: Aggregate Implications and Tests." *The American Economic Review* 53, no. 1 (1963): 55-84. Accessed September 10, 2016. http://www.jstor.org/stable/1817129
- Apergis, Nicholas and Miller, Stephen M. "Consumption asymmetry and the stock market: New evidence through a threshold adjustment model." *Economics Letters* 93, no. 3 (2006): 337-42. Accessed January 12, 2017. http://dx.doi.org/10.1016/j.econlet.2006.06.002.
- Boone, L., C. Giorno and P. Richardson. "Stock Market Fluctuations and Consumption Behaviour: Some Recent Evidence." *OECD Economics Department Working Papers* 28 (1998): 1. Accessed September 10, 2016. http://www.oecd-ilibrary.org/docserver/download/5lgsjhvj84xp.pdf?expires=1473537963&id=id&accname=guest&checksu m=3566D3EE7B7FE4AB76635C75AF1308FF.
- Case, Karl E.; Quigley, John M.; Shiller, Robert J. "Comparing Wealth Effects: The Stock Market Versus the Housing Market." *Berkeley Electronic Press* 5, no. 1 (2005): 1235-35. Accessed January 12, 2017. http://www.nber.org/papers/w8606.pdf.
- De Gregorio, Jose. Macroeconomía: Teoría y Política. México City: Pearson-Educación, 2012. PDF
- Dornbusch, Rudiger, Stanley Fischer, and Richard Startz. *Macroeconomics*. 9th ed. Boston: McGraw-Hill/Irwin, 2004.
- Franco, Modigliani. "Life Cycle, Individual Thrift, and the Wealth of Nations." *The American Economic Review* 76, no. 3 (1986): 297-313. www.jstor.org/stable/1813352.
- Garner, C. Alan. "Has the Stock Market Crash Reduced Consumer Spending?" *Economic Review* (1988): 3-16. Accessed January 12, 2017. https://www.kansascityfed.org/PUBLICAT/ECONREV/EconRevArchive/1988/2q88garn.pdf.
- Gujarati, Damodar N., and Dawn C. Porter. *Basic Econometrics*. 4th ed. The Mcgraw-Hill Series, Economics. Boston: McGraw-Hill Irwin, ©2004.
- Hall, Robert. E. "Stochastic Implications of the Life Cycle-Permanent Income Hypothesis." *The Journal of Political Economy* 86, no. 6 (1978): 971-987. Accessed September 10, 2016. http://web.stanford.edu/~rehall/Stochastic-JPE-Dec-1978.pdf.
- Hill, R Carter, and Randall C. Campbell. Using Sas for Econometrics. New York: Wiley, 2012
- Hill, R Carter, William E. Griffiths, and G C. Principles of Econometrics. 4th ed. Hoboken, NJ: Wiley, 2011.
- James M. Poterba, Andrew A. Samwick, Andrei Shleifer and Robert J. Shiller. "Stock Ownership Patterns, Stock Market Fluctuations, and Consumption." *Brookings Papers on Economic Activity* 1, no. 2 (1995): 295-372. Accessed September 10, 2016. http://www.jstor.org/stable/2534614.
- Lettau, M. and Ludvigson, S. "Consumption, Aggregate Wealth, and Expected Stock Returns." *The Journal of Finance* 56, no. 3 (2001): 815-49. Accessed January 12, 2017. http://dx.doi.org/10.1111/0022-1082.00347.

- Maki, Dean M. and Dynan, Karen E. "Does Stock Market Wealth Matter for Consumption?" (2001). Accessed September 10, 2016. https://www.federalreserve.gov/pubs/feds/2001/200123/200123pap.pdf.
- Mehra, Yash P. "The Wealth Effect in Empirical Life-Cycle Aggregate Consumption Equations." *Economic Quarterly* 87, no. 2 (2001): 1. Accessed September 10, 2016.https://www.richmondfed.org/-/media/richmondfedorg/publications/research/economic_quarterly/2001/spring/pdf/mehra.pdf.
- Poterba, James M. "Stock Market Wealth and Consumption." *Journal of Economic Perspective* 14, no. 2 (2000): 1. Accessed September 10, 2016. http://www-personal.umich.edu/~kathrynd/JEP.StockMarketWealthandConsumption.pdf.
- Rasche, Robert H. "Impact of the Stock Market On Private Demand." *The American Economic Review* 62, no. 1/2 (1972): 220-28. Accessed January 16, 2017. http://www.jstor.org/stable/1821546.
- Romer, Christina D. "He Great Crash and the Onset of the Great Depression." *Quarterly Journal of Economics* 105, no. 3 (1990): 597-624. Accessed January 16, 2017. http://qje.oxfordjournals.org/content/105/3/597.short.
- Rosen, Lewis J. "Stock Market Capital Gains and Consumption Expenditures." *The Journal of Finance* 28, no. 5 (1973): 1379. Accessed January 16, 2017. http://www.jstor.org/stable/2978780.
- Screpanti, Ernesto, and Stefano Zamagni. An Outline of the History of Economic Thought. 2nd ed. Oxford: Oxford University Press, 2005. Accessed December 2, 2016. http://catdir.loc.gov/catdir/enhancements/fy0636/2005280602-d.html.
- Starr-McCluer, Martha. "Stock Market Wealth and Consumer Spending." *Finance and Economics Discussion Series, Board of Governors of the Federal Reserve System (U.S.)* 20 (1998): 1. Accessed accessed January 16, 2017. https://www.federalreserve.gov/pubs/feds/1998/199820/199820pap.pdf.

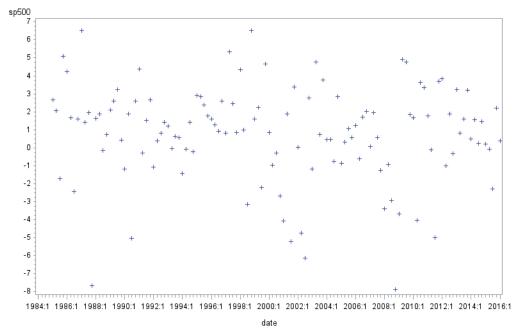
Appendix A- Data Plots


Real Consumption Expenditure growth of non-durable goods and services

1985:01 to 2016:01, Billions of dollars; Seasonally adjusted at annual rated [Index numbers, 2009=100], quarterly frequency


Source: Compiled by author with data from Bureau of Economic Analysis Copyright (c) 2016 Sosa Cueto, R. Jr. All rights reserved.

Households and Nonprofit Organizations, percentage change of Real Net Worth 1985:01 to 2016:01, Billions of dollars, seasonally adjusted at annual rated [Index numbers, 2009=100], quarterly frequency


Source: Compiled by author with data from Z1 Federal Reserve, US Financial accounts Copyright (c) 2016 Sosa Cueto, R. Jr. All rights reserved.

Real GDP Growth
1985:01 to 2016:01, Billions of dollars; Seasonally adjusted at annual rated [Index numbers, 2009=100], quarterly frequency

Source: Compiled by author with data from Bureau of Economic Analysis Copyright (c) 2016 Sosa Cueto, R. Jr. All rights reserved.

S&P500, rate of return 1985:01 to 2016:01, quarterly frequency

Source: Compiled by author with data from Yahoo! Finance Copyright (c) 2016 Sosa Cueto, R. Jr. All rights reserved.

Appendix B – Unit root tests

Phillips-Perron test for Consumption Expenditure Growth

_	THE ACTORES TROCCACTE					
Or	Ordinary Least Squares Estimates					
SSE	19.6804396	DFE	124			
MSE	0.15871	Root MSE	0.39839			
SBC	128.476884	AIC	125.64857			
MAE	0.30733347	AICC	125.68109			
MAPE	174.939478	HQC	126.797565			
Durbin-Watson	0.8173	Regress R-Square	0.0000			
		Total R-Square	0.0000			

Phillips-Perron Unit Root Test						
Type Lags Rho Pr < Rho Tau Pr < Tau						
Zero Mean	2	-9.1136	0.0346	-2.4391	0.0148	
Single Mean	2	-45.1391	0.0011	-5.5083	<.0001	
Trend	2	-58.4740	0.0004	-6.2939	<.0001	

Parameter Estimates						
Variable DF Estimate Standard Error t Value Pr						
Intercept	1	0.6399	0.0356	17.96	<.0001	

Phillips-Perron test for Wealth Percentage Change

Ordinary Least Squares Estimates						
SSE	579.405443	DFE	124			
MSE	4.67262	Root MSE	2.16163			
SBC	551.27404	AIC	548.445726			
MAE	1.57923841	AICC	548.478246			
MAPE	295.777973	HQC	549.594721			
Durbin-Watson	1.5213	Regress R-Square	0.0000			
		Total R-Square	0.0000			

Phillips-Perron Unit Root Test						
Type Lags Rho Pr < Rho Tau Pr < Ta						
Zero Mean	2	-77.0805	<.0001	-7.5400	<.0001	
Single Mean	2	-95.0190	0.0011	-8.6711	<.0001	
Trend	2	-95.2597	0.0004	-8.6508	<.0001	

Parameter Estimates							
Variable	DF	Estimate	Standard Error	t Value	Approx Pr > t		
Intercept	1	0.9599	0.1933	4.96	<.0001		

Phillips-Perron test for GPD growth

Ordinary Least Squares Estimates						
SSE	43.9202302	DFE	124			
MSE	0.35420	Root MSE	0.59514			
SBC	228.82061	AIC	225.992296			
MAE	0.42634606	AICC	226.024816			
MAPE	132.453001	HQC	227.14129			
Durbin-Watson	1.1999	Regress R-Square	0.0000			
		Total R-Square	0.0000			

Phillips-Perron Unit Root Test						
Type Lags Rho Pr < Rho Tau Pr < Ta						
Zero Mean	2	-27.7916	<.0001	-4.1347	<.0001	
Single Mean	2	-75.5997	0.0011	-7.2668	<.0001	
Trend	2	-83.1100	0.0004	-7.7015	<.0001	

Parameter Estimates							
Variable	DF	Estimate	Standard Error	t Value	Approx Pr > t		
Intercept	1	0.6470	0.0532	12.15	<.0001		

Phillips-Perron test for S&P500 Rate of Return

Ordinary Least Squares Estimates						
SSE	877.953686	DFE	124			
MSE	7.08027	Root MSE	2.66088			
SBC	603.22296	AIC	600.394646			
MAE	1.95881569	AICC	600.427167			
MAPE	181.160937	HQC	601.543641			
Durbin-Watson	1.9091	Regress R-Square	0.0000			
		Total R-Square	0.0000			

Phillips-Perron Unit Root Test						
Type Lags Rho Pr < Rho Tau Pr < Tau						
Zero Mean	2	-110.6259	<.0001	-9.9189	<.0001	
Single Mean	2	-117.9594	0.0011	-10.5950	<.0001	
Trend	2	-118.7881	0.0004	-10.6372	<.0001	

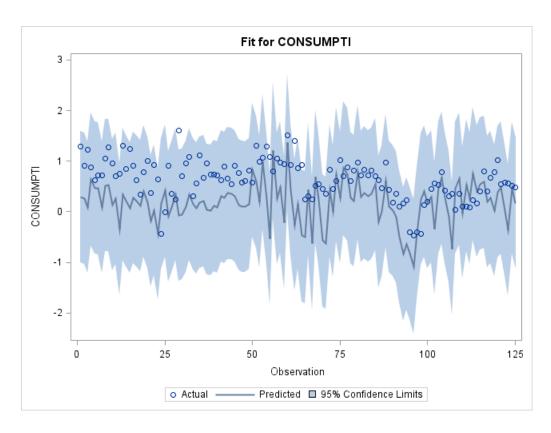
Parameter Estimates							
Variable	DF	Estimate	Standard Error	t Value	Approx Pr > t		
Intercept	1	0.7688	0.2380	3.23	0.0016		

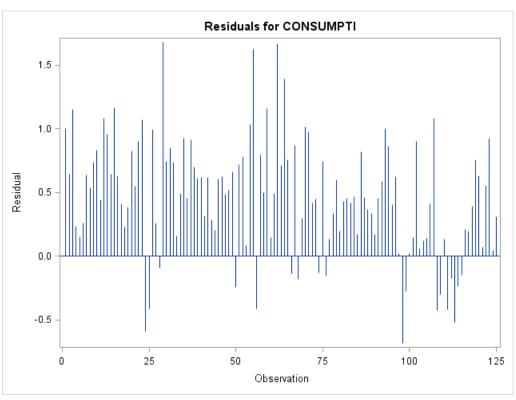
Appendix C – Two-Stages Least Squares Estimation

Estimated Consumption Model

The SYSLIN Procedure Two-Stage Least Squares Estimation

Model	CONSUMPTION
Dependent Variable	С


Analysis of Variance							
Source DF Sum of Squares Mean Square F Value							
Model	1	19.31242	19.31242	44.99	<.0001		
Error	124	53.22652	0.429246				
Uncorrected Total	125	70.86703					


Root MSE	0.65517	R-Square	0.26624
Dependent Mean	0.63992	Adj R-Sq	0.26032
Coeff Var	102.38353		

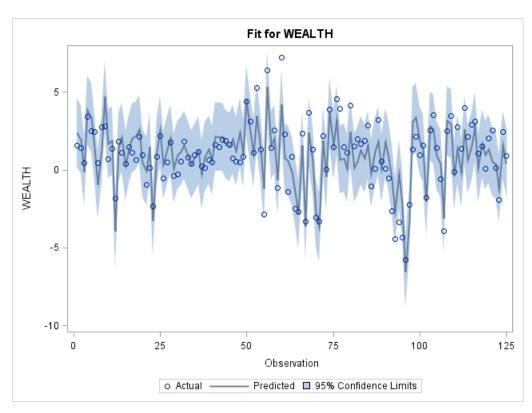
Note: The NOINT option changes the definition of the R-Square statistic to:

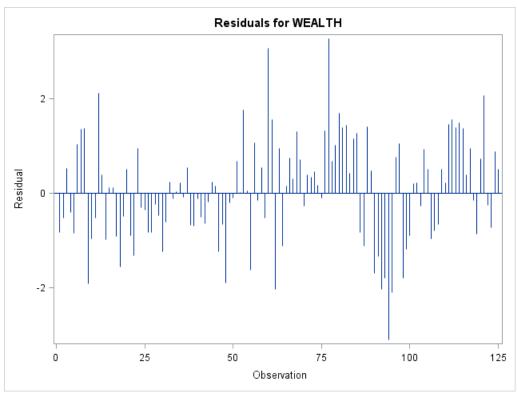
1 - (Residual Sum of Squares/Uncorrected Total Sum of Squares).

	Parameter Estimates							
Variable DF Parameter Standard Error t Value Pr > t Estimate								
w	1	0.188180	0.028055	6.71	<.0001	1.02104846		

Estimated Wealth, reduced-form equation

The SYSLIN Procedure **Two-Stage Least Squares Estimation**


Model	WEALTH
Dependent Variable	w


Analysis of Variance							
Source	DF	Mean Square	F Value	Pr > F			
Model	2	545.0438	272.5219	224.15	<.0001		
Error	123	149.5431	1.215798				
Uncorrected Total	125	694.5869					

Root MSE	1.10263	R-Square	0.78470
Dependent Mean	0.95992	Adj R-Sq	0.78120
Coeff Var	114.86675		

Note: The NOINT option changes the definition of the R-Square statistic to: 1 - (Residual Sum of Squares/Uncorrected Total Sum of Squares).

Parameter Estimates						
Variable DF Parameter Standard Error t Value Pr > t Standardize Estimate						
у	1	0.653190	0.121231	5.39	<.0001	0.17983764
sp500	1	0.653965	0.038549	16.96	<.0001	0.80500530

Appendix D – Test for Overidentifying Restrictions

Test for Overidentifying Restrictions						
Num DF Den DF F Value Pr > F						
1	123	371.09	0.0001			

Appendix E – Cointegration Tests

Phillips-Perron test for Estimated Consumption Model Residuals

The AUTOREG Procedure

Dependent Variable	Resid
	Residual Values

Phillips-Perron test for Residuals

1115715115011110						
Ordinary Least Squares Estimates						
SSE 26.8594534 DFE 124						
MSE	0.21661	Root MSE	0.46541			
SBC	167.35096	AIC	164.522646			
MAE	0.36403238	AICC	164.555167			
MAPE	149.258928	HQC	165.671641			
Durbin-Watson	1.6293	Regress R-Square	0.0000			
		Total R-Square	0.0000			

Phillips-Perron Unit Root Test							
Type Lags Rho Pr < Rho Tau Pr < Tau							
Zero Mean	2	-43.0275	<.0001	-5.4369	<.0001		
Single Mean	2	-101.0911	0.0011	-9.2516	<.0001		
Trend	2	-112.5103	0.0004	-10.1089	<.0001		

Parameter Estimates						
Variable DF Estimate Standard Error t Value Pr >						
Intercept	1	0.4593	0.0416	11.03	<.0001	

Phillips-Perron test for Estimated Wealth Model Residuals

The AUTOREG Procedure

Dependent Variable	Resid
	Residual

Phillips-Perron test for Residuals

Ordinary Least Squares Estimates					
SSE	149.393947	124			
MSE	1.20479	Root MSE	1.09763		
SBC	381.847075	AIC	379.018761		
MAE	0.87578367	AICC	379.051281		
MAPE	100.345078	HQC	380.167756		
Durbin-Watson 1.3217		Regress R-Square	0.0000		
		Total R-Square	0.0000		

Phillips-Perron Unit Root Test							
Type Lags Rho Pr < Rho Tau Pr < Tau							
Zero Mean	2	-79.2940	<.0001	-7.7520	<.0001		
Single Mean	2	-79.3746	0.0011	-7.7290	<.0001		
Trend	2	-81.4718	0.0004	-7.8341	<.0001		

Parameter Estimates						
Variable DF Estimate Standard Error t Value Pr >						
Intercept	1	0.0345	0.0982	0.35	0.7255	

Appendix F – Normality Tests

Normality Test - Estimated Consumption Model Residuals

The UNIVARIATE Procedure Variable: c_ (Residual Values)

Moments					
N	125	Sum Weights	125		
Mean	0.45927828	Sum Observations	57.4097852		
Std Deviation	0.46354679	Variance	0.21487563		
Skewness	-0.0235306	Kurtosis	0.08649792		
Uncorrected SS	53.2265209	Corrected SS	26.8594534		
Coeff Variation	100.929395	Std Error Mean			

Basic Statistical Measures						
Location Variability						
Mean	0.459278	Std Deviation	0.46355			
Median	0.460029	Variance	0.21488			
Mode		Range	2.36940			
		Interquartile Range	0.59494			

Tests for Location: Mu0=0					
Test	Statistic p Value				
Sign	M	44.5	Pr >= M	<.0001	
Signed Rank	S 3269.5 Pr >= S <.0001				

Tests for Normality					
Test	Statistic p Value				
Shapiro-Wilk	w	0.990168	Pr < W	0.5186	
Kolmogorov-Smirnov	D	0.045509	Pr > D	>0.1500	
Cramer-von Mises	W-Sq	0.03783	Pr > W-Sq	>0.2500	
Anderson-Darling	A-Sq	0.305291	Pr > A-Sq	>0.2500	

Normality Test - Estimated Wealth Model Residuals

The UNIVARIATE Procedure Variable: ehat1 (Residual)

Moments					
N	125	Sum Weights	125		
Mean	0.03454813	Sum Observations	4.31851675		
Std Deviation	1.09322988	Variance	1.19515158		
Skewness	0.06804484	Kurtosis	0.17329255		
Uncorrected SS	149.543144	Corrected SS	149.393947		
Coeff Variation	3164.36738	Std Error Mean			

Basic Statistical Measures					
Location Variability					
Mean	0.034548	Std Deviation	1.09323		
Median	0.045295	Variance	1.19515		
Mode		Range	6.37642		
		Interquartile Range	1.46852		

Tests for Location: Mu0=0						
Test	Statistic p Value					
Sign	M	2.5	Pr >= M	0.7207		
Signed Rank	S	141.5	Pr >= S	0.7289		

Tests for Normality				
Test Statistic p Value				
Shapiro-Wilk	w	0.992869	Pr < W	0.7788
Kolmogorov-Smirnov	D	0.035021	Pr > D	>0.1500
Cramer-von Mises W-Sq 0.02		0.023502	Pr > W-Sq	>0.2500
Anderson-Darling	A-Sq	0.216839	Pr > A-Sq	>0.2500

Appendix G –Serial Correlation Tests

	Parameter Estimates for Second-Stage Regression						
Variable DF Parameter Standard Error t Value Pr > t					Standardized Estimate		
w	1	0.188180	0.028055	6.71	<.0001	1.02104846	

Durbin-Watson	0.822187
Number of Observations	125
First-Order Autocorrelation	0.578573

	Parameter Estimates for reduced-form equation						
						Standardized Estimate	
у	1	0.653190	0.121231	5.39	<.0001	0.17983764	
sp500	1	0.653965	0.038549	16.96	<.0001	0.80500530	

Durbin-Watson	1.320352
Number of Observations	125
First-Order Autocorrelation	0.336628

Appendix H – Multicollinearity Test

The REG Procedure Model: MODEL1 Dependent Variable: w

Number of Observations Read	125
Number of Observations Used	125

Note: No intercept in model. R-Square is redefined.

Analysis of Variance						
Source Sum of Square F Value Pr > F						
Model	2	545.04380	272.52190	224.15	<.0001	
Error	123	149.54314	1.21580			
Uncorrected Total	125	694.58695				

Root MSE	1.10263	R-Square	0.7847
Dependent Mean	0.95992	Adj R-Sq	0.7812
Coeff Var	114.86675		

Parameter Estimates							
Variable DF Estimate Standard Error t Value Pr > t Tolerance						Variance Inflation	
у	1	0.65319	0.12123	5.39	<.0001	0.85954	1.16341
sp500	1	0.65396	0.03855	16.96	<.0001	0.85954	1.16341

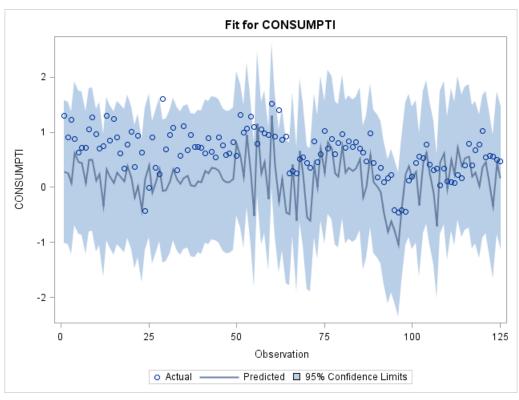
Correlation of Estimates				
Variable y sp500				
У	1.0000	-0.3748		
sp500	1.0000			

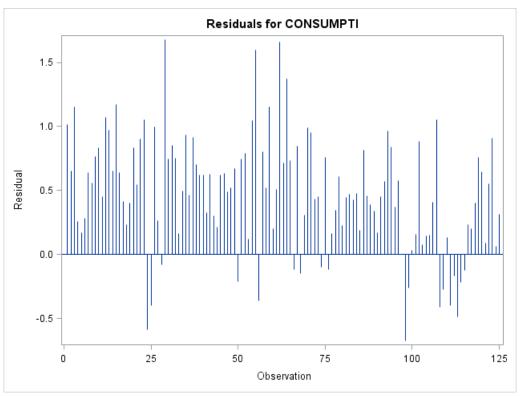
Appendix I – Alternative procedure: Seemingly unrelated regressions

Estimated Wealth Consumption

The SYSLIN Procedure Seemingly Unrelated Regression Estimation

Crossproducts for the System X'X, X'Y, Y'Y							
	w	w y sp500					
w	1669.02	28.514	144.926	414.179			
У	28.51	80.894	95.343	129.882			
sp500	144.93	95.343	800.039	602.953			
All Y	414.18	129.882	602.953	800.799			


X'X Generalized Inverse, Parameter Estimates, and SSE								
	w y sp500 All Y							
w	0.000609	000099	000099	0.180				
у	000099	0.014398	001698	0.805				
sp500	000099	001698	0.001470	0.625				
All Y	0.180124	0.805408	0.625043	244.716				


System Weighted MSE	0.9908
Degrees of freedom	247
System Weighted R-Square	0.6944

Model	CONSUMPTI
Dependent Variable	С

Parameter Estimates						
					Standardized Estimate	
w	1	0.180124	0.024686	7.30	<.0001	0.97733756

Durbin-Watson	0.779597
Number of Observations	125
First-Order Autocorrelation	0.599537

Normality Test - Estimated Consumption Model Residuals

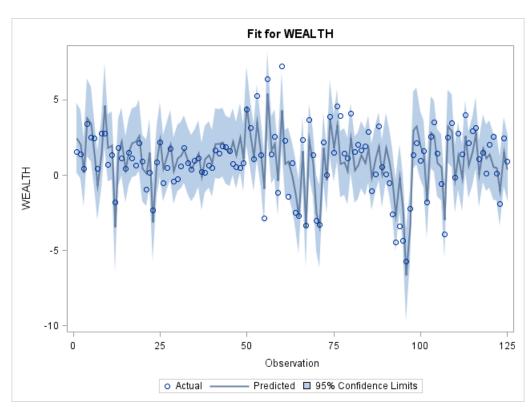
The UNIVARIATE Procedure Variable: c_ (Residual Values)

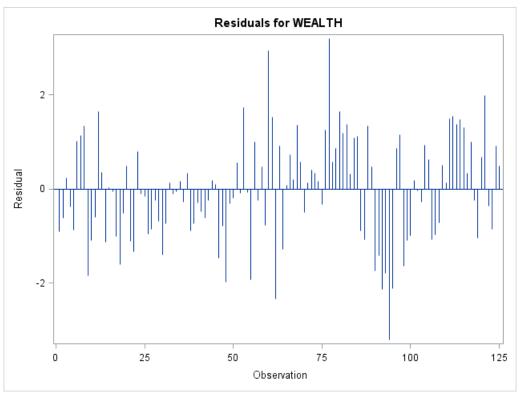
Moments							
N	125 Sum Weights						
Mean	0.46701136	Sum Observations	58.3764196				
Std Deviation	0.45353162	Variance	0.20569093				
Skewness	-0.0324993	Kurtosis	0.13672166				
Uncorrected SS	52.9738176	Corrected SS	25.7113667				
Coeff Variation	97.1136176	Std Error Mean					

Basic Statistical Measures				
Location Variability				
Mean	0.467011	Std Deviation	0.45353	
Median	0.468302	Variance	0.20569	
Mode .		Range	2.35557	
		Interquartile Range	0.58712	

Tests for Location: Mu0=0						
Test	Statistic p Value			ue		
Sign	M	43.5	Pr >= M	<.0001		
Signed Rank	S	3340.5	Pr >= S	<.0001		

Tests for Normality						
Test	Statistic p Value					
Shapiro-Wilk	w	0.990622	Pr < W	0.5608		
Kolmogorov-Smirnov	D 0.043185		Pr > D	>0.1500		
Cramer-von Mises	W-Sq	0.03612	Pr > W-Sq	>0.2500		
Anderson-Darling	ng A-Sq 0.297721 Pr > A-Sq > 0.2500					


Estimated Wealth Model


The SYSLIN Procedure Seemingly Unrelated Regression Estimation

Model	WEALTH
Dependent Variable	w

Parameter Estimates						
						Standardized Estimate
у	1	0.805408	0.119991	6.71	<.0001	0.22174660
sp500	1	0.625043	0.038343	16.30	<.0001	0.76940383

Durbin-Watson	1.357759
Number of Observations	125
First-Order Autocorrelation	0.317609

Normality Test - Estimated Wealth Model Residuals

The UNIVARIATE Procedure Variable: w_ (Residual Values)

Moments								
N	125	Sum Weights	125					
Mean	-0.0416976	Sum Observations	-5.2122052					
Std Deviation	1.10037517	Variance	1.21082552					
Skewness	0.04475536	Kurtosis	0.09213163					
Uncorrected SS	151.570527	Corrected SS	151.35319					
Coeff Variation	-2638.9386	Std Error Mean						

Basic Statistical Measures								
Loc	ation	Variability						
Mean	-0.04170	Std Deviation	1.10038					
Median	-0.05455	Variance	1.21083					
Mode		Range	6.40401					
		Interquartile Range	1.58443					

Tests for Location: Mu0=0									
Test	St	atistic	p Val	ue					
Sign	М	-2.5	Pr >= M	0.7207					
Signed Rank	S	-158.5	Pr >= S	0.6978					

Tests for Normality									
Test	St	atistic	p Value						
Shapiro-Wilk	w	0.99376	Pr < W	0.8571					
Kolmogorov-Smirnov	D	0.034913	Pr > D	>0.1500					
Cramer-von Mises	W-Sq	0.023763	Pr > W-Sq	>0.2500					
Anderson-Darling	A-Sq	0.206969	Pr > A-Sq	>0.2500					

Covariances and Correlation Estimates

The SYSLIN Procedure Seemingly Unrelated Regression Estimation

Covar	Covariances of Parameter Estimates										
	w	У	sp500								
w	0.000609	000099	000099								
у	000099	0.014398	001698								
sp500	000099	001698	0.001470								

Correlations of Parameter Estimates									
	w	у	sp500						
w	1.0000	-0.0333	-0.1042						
у	-0.0333	1.0000	-0.3691						
sp500	-0.1042	-0.3691	1.0000						

Cross Model Covariance									
	CONSUMPTI	WEALTH							
CONSUMPTI	0.425280	-0.10527							
WEALTH	105272	1.21580							

Cross Model Correlation								
	CONSUMPTI							
CONSUMPTI	1.00000	-0.14640						
WEALTH	-0.14640	1.00000						

Cross Model Inverse Correlation								
	CONSUMPTI	WEALTH						
CONSUMPTI	1.02190	0.14961						
WEALTH	0.14961	1.02190						

Cross Model Inverse Covariance								
	CONSUMPTI	WEALTH						
CONSUMPTI	2.40289	0.208058						
WEALTH	0.20806	0.840520						

Appendix J– Autoregressive Error Mode l, Corrects for Serial Correlation

Estimated Consumption Model

The AUTOREG Procedure

Dependent Variable | c

 $c = \alpha(w)$

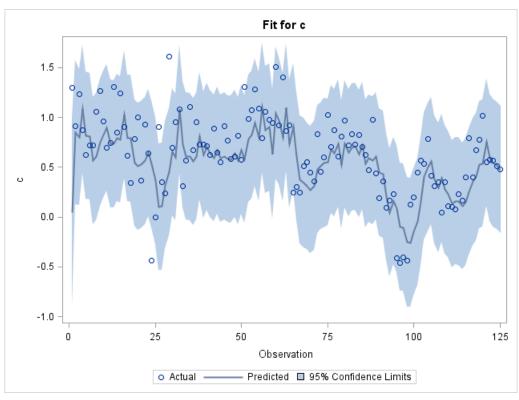
The AUTOREG Procedure

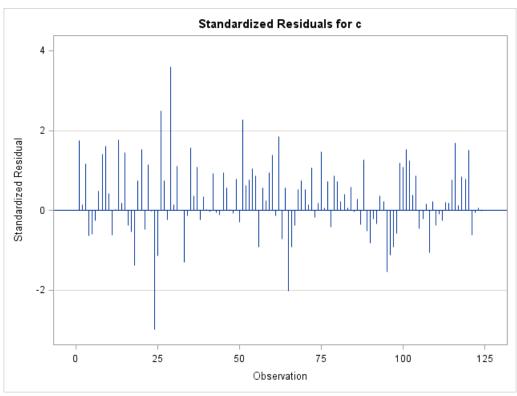
Or	dinary Least	Squares Estimates	
SSE	52.7347369	DFE	124
MSE	0.42528	Root MSE	0.65214
SBC	251.683028	AIC	248.854714
MAE	0.55216269	AICC	248.887234
MAPE	151.594644	HQC	250.003708
Durbin-Watson	0.6838	Regress R-Square	0.2559
		Total R-Square	0.2559

NOTE: No intercept term is used. R-squares are redefined.

Parameter Estimates										
Variable DF Estimate		Standard Error	t Value	Approx Pr > t						
w	1	0.1616	0.0247	6.53	<.0001					

Estimates of Autocorrelations																							
Lag	Covariance	Correlation	-1	9	8	7	6	5	4	3	2	1	0	1	2	3	4	5	6	7	8	9	1
0	0.4219	1.000000	ı										1:	* * :	* * :	· * >	* * *	***	k * *	k * *	k * *	***	*
1	0.2728	0.646731											1	* * :	* * :	t * 7	* * *	***	k * *	k			
2	0.2570	0.609102											1:	* * :	* * :	t * 7	* * *	***	*				I
3	0.2791	0.661606											13	* * :	* * :	k * 7	* * *	* * *	k * *	k			
4	0.2226	0.527576	ı										1	* * :	* * :	k * 7	* * *	* * *	k				I


Preliminary MSE 0.1910


Estimates of Autoregressive Parameters							
Lag	Coefficient	Standard Error	t Value				
1	-0.332323	0.091211	-3.64				
2	-0.180465	0.090035	-2.00				
3	-0.368824	0.090035	-4.10				
4	0.040743	0.091211	0.45				

Autoregressive Error Model Correct for serial Correlation

Yule-Walker Estimates							
SSE	12.4133287	DFE	120				
MSE	0.10344	Root MSE	0.32163				
SBC	91.3656829	AIC	77.2241142				
MAE	0.23450308	AICC	77.7283158				
MAPE	98.7118404	HQC	82.969087				
Durbin-Watson	1.4981	Regress R-Square	0.0359				
		Total R-Square	0.8248				
NOTE: No intercept term is used. R-squares are redefined.							

Parameter Estimates							
Variable	DF	Estimate	Standard Error	t Value	Approx Pr > t		
w	1	0.0284	0.0134	2.11	0.0367		

Appendix K- Autoregressive Error Model 2, Corrects for Serial Correlation

Estimated Consumption Model

The AUTOREG Procedure

Dependent Variable c

$c = \alpha(y) + \beta(sp500)$

The AUTOREG Procedure

Ordinary Least Squares Estimates										
SSE	19.0553184	DFE	123							
MSE	0.15492	Root MSE	0.39360							
SBC	129.270324	AIC	123.613697							
MAE	0.30937623	AICC	123.712057							
MAPE	115.946692	HQC	125.911686							
Durbin-Watson	1.7871	Regress R-Square	0.7311							
		Total R-Square	0.7311							

NOTE: No intercept term is used. R-squares are redefined.

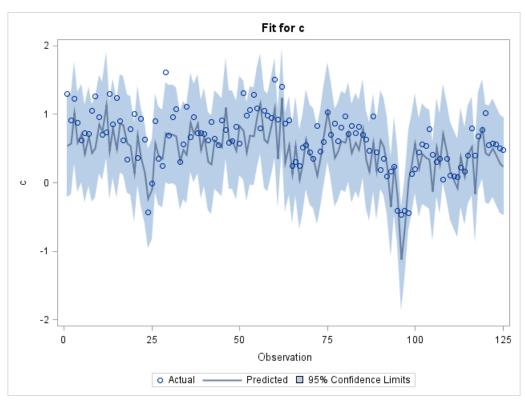
Parameter Estimates											
Variable	DF	Estimate	t Value	Approx Pr > t							
у	1	0.7326	0.0433	16.93	<.0001						
sp500	1	0.000956	0.0138	0.07	0.9447						

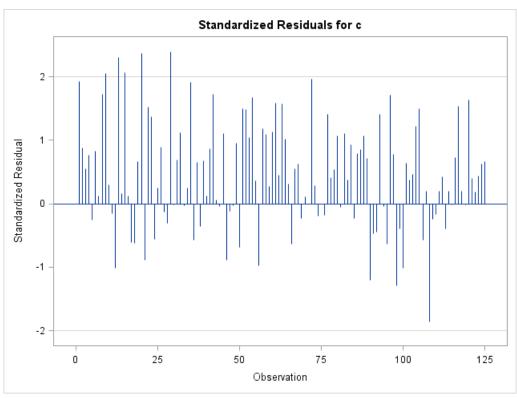
Correlation of Parameter Estimates							
y sp50							
у	1	-0.37478					
sp500	-0.37478	1					

	Estimates of Autocorrelations																						
Lag	Covariance	Correlation	-1	9	8	7	6	5	4	3	2	1	0	1	2	3	4	5	6	7	8	9	1
0	0.1524	1.000000	ı										;	* * >	* * 7	* * *	* * *	k * *	**;	* * *	* * 7	***	*
1	0.0145	0.095371	ı										;	* *									ı
2	0.0315	0.206476	1										;	* * >	* *								1
3	0.0208	0.136669											1	* * >	k								ı
4	0.0252	0.165260	ı										;	* * >	t								

Preliminary MSE 0.1415

Estimates of Autoregressive Parameters									
Lag	Coefficient	Standard Error	t Value						
1	-0.042738	0.091063	-0.47						
2	-0.169066	0.090678	-1.86						
3	-0.100762	0.090678	-1.11						
4	-0.114901	0.091063	-1.26						


Autoregressive Error Model Correct for serial Correlation


The AUTOREG Procedure

Yule-Walker Estimates										
SSE	15.5403872	DFE	119							
MSE	0.13059	Root MSE	0.36137							
SBC	123.273453	AIC	106.30357							
MAE	0.27695315	AICC	107.015435							
MAPE	72.3000451	HQC	113.197538							
Durbin-Watson	1.5895	Regress R-Square	0.5122							
		Total R-Square	0.7807							
NOTE: No intercept term is used. R-squares are redefined.										

Parameter Estimates											
Variable	DF	t Value	Approx Pr > t								
у	1	0.5400	0.0500	10.80	<.0001						
sp500	1	0.000639	0.0121	0.05	0.9581						

Correlation of Parameter Estimates						
y sp50						
У	1	-0.25327				
sp500	-0.25327	1				

Appendix L – Estimated Model with Lags in GDP and S&P500

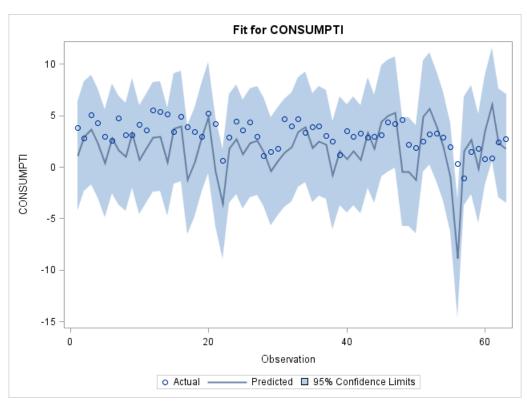
Estimated Consumption Model

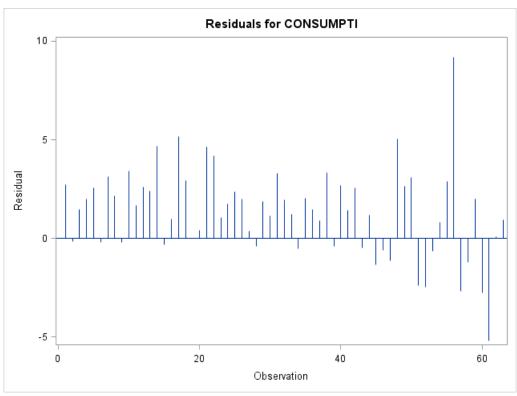
The SYSLIN Procedure Two-Stage Least Squares Estimation

Model	CONSUMPTION
Dependent Variable	С

Analysis of Variance											
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F						
Model	1	414.8889	414.8889	60.67	<.0001						
Error	61	417.1262	6.838134								
Uncorrected Total	62	718.2431									

Root MSE	2.61498	R-Square	0.49866
Dependent Mean	3.11993	Adj R-Sq	0.49044
Coeff Var	83.81548		


Note: The NOINT option changes the definition of the R-Square statistic to:


1 - (Residual Sum of Squares/Uncorrected Total Sum of Squares).

Parameter Estimates										
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t	Standardized Estimate				
w	1	0.478856	0.061476	7.79	<.0001	1.67340111				

Durbin-Watson	1.269886
Number of Observations	62
First-Order Autocorrelation	0.363905

Test for Overidentifying Restrictions				
Num DF Den DF F Value Pr >				
3	58	35.69	0.0001	

Estimated Wealth Model with Lags

The SYSLIN Procedure Two-Stage Least Squares Estimation

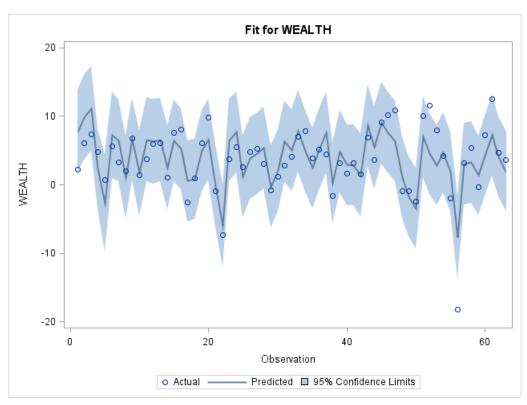
Model Crossproducts for each Equation Given By X'X, X'y, y'y					
	у	l_y	sp500	I_sp500	w
У	883.55	632.41	2133.3	3742.4	911.72
l_y	632.41	898.85	2045.9	2240.9	734.06
sp500	2133.30	2045.87	27971.2	9443.8	6559.05
I_sp500	3742.42	2240.93	9443.8	28530.1	3749.03
w	911.72	734.06	6559.0	3749.0	2262.92

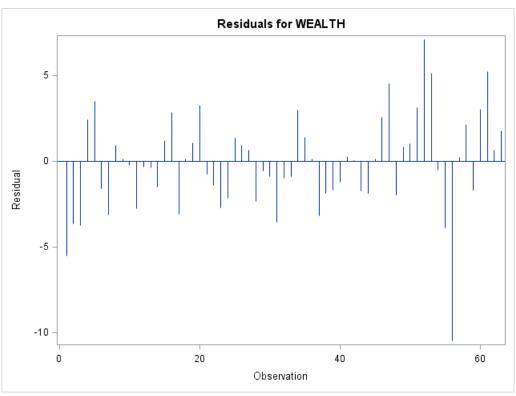
X'X Generalized Inverse, Parameter Estimates, and SSE						
	у	l_y	sp500	l_sp500	w	
у	0.004337	001932	000055	000399	0.681	
l_y	001932	0.002389	000056	0.000084	-0.058	
sp500	000055	000056	0.000045	000003	0.193	
I_sp500	000399	0.000084	000003	0.000082	-0.017	
w	0.680872	058109	0.192585	017090	485.720	

Model	WEALTH
Dependent Variable	w

Analysis of Variance						
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F	
Model	4	1777.204	444.3011	53.05	<.0001	
Error	58	485.7201	8.374485			
Uncorrected Total	62	2262.925				

Root MSE	2.89387	R-Square	0.78536
Dependent Mean	3.72812	Adj R-Sq	0.77055
Coeff Var	77.62272		


Note: The NOINT option changes the definition of the R-Square statistic to: 1 - (Residual Sum of Squares/Uncorrected Total Sum of Squares).


	Parameter Estimates						
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t	Standardized Estimate	
у	1	0.680872	0.190578	3.57	0.0007	0.31718023	
l_y	1	-0.05811	0.141439	-0.41	0.6827	-0.02717641	
sp500	1	0.192585	0.019445	9.90	<.0001	0.70352697	
I_sp500	1	-0.01709	0.026188	-0.65	0.5166	-0.06244039	

Covariances of Parameter Estimates					
	у	l_y	sp500	I_sp500	
у	0.036320	016179	000458	003342	
l_y	016179	0.020005	000468	0.000706	
sp500	000458	000468	0.000378	000028	
I_sp500	003342	0.000706	000028	0.000686	

Correlations of Parameter Estimates					
	у	l_y	sp500	I_sp500	
у	1.0000	-0.6002	-0.1237	-0.6696	
l_y	-0.6002	1.0000	-0.1700	0.1905	
sp500	-0.1237	-0.1700	1.0000	-0.0556	
l_sp500	-0.6696	0.1905	-0.0556	1.0000	

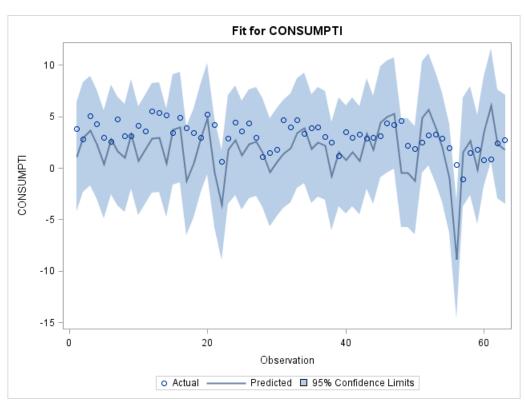
Durbin-Watson	1.207134
Number of Observations	62
First-Order Autocorrelation	0.383406

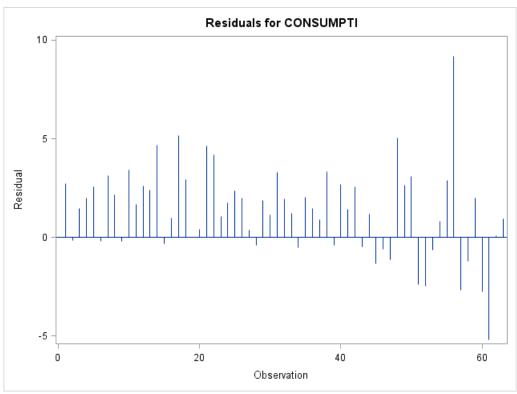
Appendix M – Estimated Model with Median Age

The SYSLIN Procedure Two-Stage Least Squares Estimation

Model	CONSUMPTION
Dependent Variable	С

Analysis of Variance							
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F		
Model	1	423.9525	423.9525	61.26	<.0001		
Error	62	429.0794	6.920635				
Uncorrected Total	63	732.7927					


Root MSE	2.63071	R-Square	0.49699
Dependent Mean	3.13095	Adj R-Sq	0.48888
Coeff Var	84.02271		


Note: The NOINT option changes the definition of the R-Square statistic to: 1 - (Residual Sum of Squares/Uncorrected Total Sum of Squares).

Parameter Estimates						
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t	Standardized Estimate
w	1	0.488187	0.062374	7.83	<.0001	1.70388823

Durbin-Watson	1.295914
Number of Observations	63
First-Order Autocorrelation	0.342258

Test for Overidentifying Restrictions					
Num DF Den DF F Value Pr > F					
3	59	33.87	0.0001		

The SYSLIN Procedure Two-Stage Least Squares Estimation

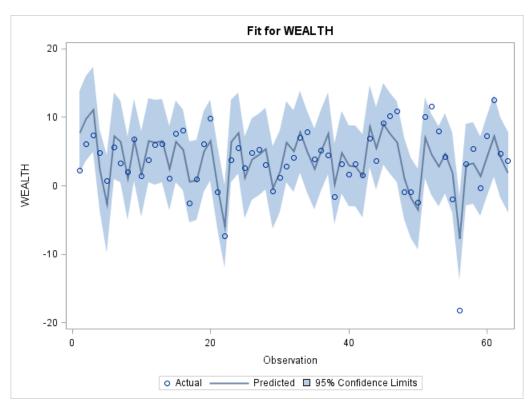
$\label{thm:model} \textbf{Model Crossproducts for each Equation Given By X'X, X'y, y'y}$						
	у	sp500	age	age2	w	
у	905.59	2244.5	70.194	141.611	922.04	
sp500	2244.46	28532.0	292.159	588.449	6611.12	
age	70.19	292.2	35.987	72.099	84.90	
age2	141.61	588.4	72.099	144.451	171.08	
w	922.04	6611.1	84.900	171.081	2267.76	

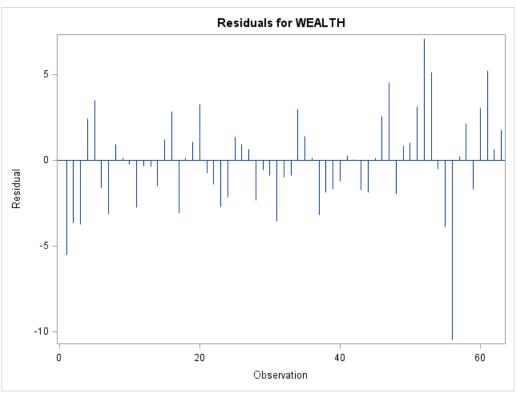
X'X Generalized Inverse, Parameter Estimates, and SSE						
	у	sp500	age	age2	w	
у	0.00229	000068	1.32	-0.66	0.679	
sp500	-0.00007	0.000045	0.05	-0.02	0.194	
age	1.31723	0.048559	2235.05	-1117.06	182.930	
age2	-0.65943	024356	-1117.06	558.30	-91.576	
w	0.67865	0.193846	182.93	-91.58	496.636	

Model	WEALTH
Dependent Variable	w

Analysis of Variance							
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F		
Model	4	1771.124	442.7811	52.60	<.0001		
Error	59	496.6356	8.417553				
Uncorrected Total	63	2267.760					

Root MSE	2.90130	R-Square	0.78100
Dependent Mean	3.70385	Adj R-Sq	0.76615
Coeff Var	78.33206		


Note: The NOINT option changes the definition of the R-Square statistic to: 1 - (Residual Sum of Squares/Uncorrected Total Sum of Squares).


	Parameter Estimates						
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t	Standardized Estimate	
У	1	0.678646	0.138859	4.89	<.0001	0.31725127	
sp500	1	0.193846	0.019567	9.91	<.0001	0.70999340	
age	1	182.9303	137.1628	1.33	0.1874	25.88269985	
age2	1	-91.5757	68.55326	-1.34	0.1867	-25.91289710	

Covariances of Parameter Estimates							
	у	y sp500 age age2					
У	0.0193	000572	11.1	-5.55			
sp500	-0.0006	0.000383	0.4	-0.21			
age	11.0879	0.408752	18813.6	-9402.88			
age2	-5.5508	205017	-9402.9	4699.55			

Correlations of Parameter Estimates					
	у	sp500	age	age2	
у	1.0000	-0.2107	0.5822	-0.5831	
sp500	-0.2107	1.0000	0.1523	-0.1528	
age	0.5822	0.1523	1.0000	-1.0000	
age2	-0.5831	-0.1528	-1.0000	1.0000	

Durbin-Watson	1.238367
Number of Observations	63
First-Order Autocorrelation	0.346668

