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ABSTRACT OF THESIS 

 Amphibian populations are currently declining globally. There are many possible 

causes for these declines, among which an emerging infectious disease, 

chytridiomycosis, has been implicated. Chytridiomycosis in the U.S.A. is mainly 

caused by the Batrachochytrium dendrobatidis. In this study, I used qPCR assays to 

detect the existence of this pathogen in the Eastern Hellbender (Cryptobranchus 

alleganiensis alleganiensis) populations in the Allegheny and Susquehanna River 

drainages of New York and Pennsylvania. Chytrid is most often tested by using skin 

swabs, but in this study, tail clips, dorsal skin, blood and eggs were tested as well.  

Batrachochytrium dendrobatidis was detected in tail clips in this study, although the 

tail clip samples seemed to have lower Bd detection sensitivities and concentrations 

compared with swab samples. Only three out of 41 samples that had tested positive for 

swabs also tested positive for tail clips, and very small tail clip samples did not result 

in chytrid positives, despite a relatively high known rate of infection in Pennsylvania. 

Batrachochytrium dendrobatidis was detected in 8.5% of NY and 2.4% of PA tail clip 

samples (out of 124 total) and from tail clips taken as early as 2004 in the NY Allegheny 

River drainage. This shows that archival samples, often available for genetic testing, 

may also be used for Bd detection. The Bd positive rate from swab samples (25 in total) 

was 56.0% in NY.  
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INTRODUCTION 

Chytridiomycosis 

Since the late 20th century, one of the most urgent environmental problems is the 

global decline of amphibian populations. The 2004 Global Amphibian Assessment 

(IUCN Red List) found that 32% of amphibian species are threatened, and that 

amphibians should be considered the most threatened class of vertebrates on the IUCN 

Red List. The amphibian declines should get our attention because amphibians are 

thought to be an indicator organism of global environmental health. The possible causes 

for this sharp decline can be sorted into two types (Collins and Storfer 2003). Type I 

hypotheses represent the causes that have been in existence for over a century, such as 

alien species, over-exploitation and land use changes. Type II hypotheses include the 

more recent causes, which began during the middle of 20th century, including global 

change (global climate change and UV radiation), contaminants and emerging 

infectious diseases (Collins and Storfer 2003). Understanding the causes for amphibian 

declines is very important in order to seek solutions for the amphibian conservation. 

Among a variety of hypotheses on the causes of global amphibian declines, the 

impact of emerging infectious diseases has drawn attention. Two infectious diseases, 

chytridiomycosis (phylum, Chytridiomycota; class, Chytridiomycetes; order, 

Chytridiales; genus, Batrachochytrium) and iridoviral infections (family, Iridoviridae; 

genus, Ranavirus) were found to result in the amphibian mass deaths in Australia, the 

United Kingdom, and North and Central America (Daszak et al. 1999). A study of sixty-

four amphibian morbidity and mortality events in the U.S., as well as some other review 

studies, showed these emerging infectious diseases were playing important roles in the 

amphibian declines (Green et al. 2002; Skerratt et al. 2007). My research focuses on 

the study of fungal chytridiomycosis. 
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Chytridiomycosis was first described as an “amphibian pathogen” in 1998 from 

sick and dead adult anurans collected in the rain forests of Australia and Panama during 

mass mortality events accompanied by remarkable population declines (Berger et al. 

1998). Two amphibian chytrid fungi, Batrachochytrium dendrobatidis (Bd) and 

Batrachochytrium salamandrivorans sp. nov. (Bs) were possible pathogens for this 

disease (Longcore et al. 1999; Martel et al. 2013). Batrachochytrium dendrobatidis was 

considered the only species of the genus Batrachochytrium until the second species, B. 

salamandrivorans, was isolated from the skin of fire salamanders in the Netherlands in 

2013 (Berger et al. 1998; Martel et al. 2013).  

Fungi in the phylum Chytridiomycota (chytrids) are aquatic, heterotrophic, and 

ubiquitous (Berger et al. 1998). They can be found in moist and aquatic habitats such 

as lakes, bogs, moist soils, and mud puddles, and usually act as primary degraders or 

saprobes (Powell 1993; Berger et al. 1998). Chytrids have simple thalli and tiny 

zoospores that are highly mobile (Powell 1993). Chytrids can develop without hyphae, 

and they can degrade cellulose, chitin and keratin (Berger et al. 1998; Daszak et al. 

1999). Parasitic chytrids can parasitize protists, fungi, algae, higher plants, and 

invertebrates while the amphibian is the only vertebrate they can infect (Powell 1993; 

Berger et al. 1998; Daszak et al. 1999). Batrachochytrium salamandrivorans and Bd 

are the only two species within parasitic chytrids that can infect vertebrates (Daszak et 

al. 1999; Martel et al. 2013). Batrachochytrium salamandrivorans has been found to be 

highly pathogenic and restricted to Urodela (salamanders and newts), however, it has 

not yet been found in the United States (Martel et al. 2014; Bales et al. 2015). Recent 

research showed that Bs originated in Asia where no obvious disease was found, but 

the disease broke out in Europe after its introduction there in 2010 (Martel et al. 2013; 
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Martel et al. 2014). Compared with Bs, Bd has been found distributed more broadly in 

amphibians all over the world (Martel et al. 2014; Bales et al. 2015; Bd-Maps). 

Chytridiomycosis is an epidermal disease that causes the reddening, shedding (the 

shedding skin was usually described as gray-white, opaque, and tan), thickening, or 

even hemorrhages of skin; anorexia, convulsions, and a loss of righting reflex (Daszak 

et al. 1999; Nichols et al. 2001; Whittaker and Vredenburg 2011). Batrachochytrium 

salamandrivorans infects the keratinized epidermal cells of amphibians and causes a 

hyperkeratotic and hyperplastic response (enlargement or overgrowth of an organ or 

part due to increase in size of its constituent cells of the stratum corneum and stratum 

granulosum (Boyle et al. 2004). Skin is very important for amphibians to maintain 

homeostasis, take in nutrients, release toxins and breathe (Whittaker and Vredenburg 

2011). One hypothesis for the pathogenicity of Bd is that in diseased individuals, 

epidermal electrolyte transport can be inhibited more than 50%, which can lead to the 

disruption of cutaneous function and eventual death (Voyles et al. 2009). The other 

explanation is that a fungal toxin is absorbed systemically in the infected amphibians 

(Daszak et al. 1999). These two factors may also work together. 

There are two stages in the lifecycle of Bd; the substrate-dependent and substrate-

independent (Figure 1; Rosenblum et al. 2008). Batrachochytrium dendrobatidis 

zoospores are critical in initiating the infection of amphibian tissues. They are 

flagellated, free-living and substrate-independent in nature. However, these zoospores 

have a relatively short activity period and travel relatively short distances (Piotrowski 

et al. 2004). Zoospores have chemotactic ability so that they have a tendency to colonize 

on appropriate substrates (Moss et al. 2008). The substrate-dependent portion of the life 

cycle begins once a zoospore encysts. Germlings (young zoosporangia) develop into 

zoosporangia and can produce additional zoospores. Mature zoospores are released to 
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the surrounding aquatic environment or can reinfect the same substrate (Berger et al. 

2005a). Sporangia of Bd could normally be found in the stratum corneum and stratum 

granulosum tissues and skin smears in infected amphibians, and in the keratinized 

mouthparts of tadpoles (tadpoles lack epidermal keratin) (Berger et al. 1998; Daszak et 

al. 1999). Batrachochytrium salamandrivorans can grow in a wide range of 

temperatures, from 4 ℃ to 25 ℃, and it grows optimally from 17 ℃ to 25 ℃ 

(Piotrowski et al. 2004). Batrachochytrium salamandrivorans does not grow well 

above 25 ℃ and under 4 ℃ (Piotrowski et al. 2004). Lenker et al. (2014) showed that 

the highest average infection intensities occurred in May and October, whereas the 

lowest average infection intensity occurred in July in New York. 

 

Figure 1. The lifecycle of Batrachochytrium salamandrivorans (Rosenblum et al. 2008). 
Permission granted by PNAS, copyright 2008 National Academy of Sciences, U.S.A. 
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The impact of Bd on an amphibian population could be affected by many factors. 

According to a model developed by Daszak et al. (1999), Bd is more likely to cause 

severe disease in the amphibian species that are stream-breeding habitat specialists, 

have low fecundity, and occur in montane regions (Figure 2). Some environmental 

cofactors such as increased UV-B, chemical pollution, climate change, or stress may 

predispose amphibian populations to opportunistic pathogens (Daszak et al. 1999). 

 

 

Figure 2. A model of the range of disease outcomes in populations of amphibians 

affected by Batrachochytrium dendrobatidis (Daszak et al. 1999) In this model, host 

ecologic traits and parasite biologic traits combine to produce declines in a specific 
group of amphibian species that have low fecundity, are stream-breeding habitat 

specialists, and occur in montane regions. These characteristics predispose them to 
population declines after introduction of a waterborne pathogen with a low preferred 

developmental temperature and ability to persist at low host population densities 

(Figure permission of EID). 
 

 

The Global Bd-Mapping Project is a database that is constantly up-dated providing 

the locations of worldwide studies of Bd. A Bd global map shows the global prevalence 

of this disease (Figure 3; Bd-Maps). Currently, Bd has been found in all continents 

except Antarctica, including 56 out of 82 (68.3%) countries and across the three orders 
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of amphibians. It has been found in 520 out of 1252 (41.5%) tested species, including 

families of frogs, toads, and salamanders (Bd-Maps; Fisher et al. 2013). In the U.S., Bd 

has been detected in many states, however, there are very few studies of Bd prevalence 

in New York, and no positive results have been recorded in this map to date (Figure 3). 

Similar to the debate about the reasons for global amphibian declines, two 

hypotheses are suggested for the origin and global spread of Bd; the “novel pathogen 

hypothesis (NPH)” (Skerratt et al. 2007) and the “endemic pathogen hypothesis (EPH)” 

(Rachowicz et al. 2005). The novel pathogen hypothesis states that Bd was recently 

introduced to the areas where it is causing population declines, whereas the endemic 

pathogen hypothesis claims that Bd has been a long-term endemic pathogen and 

population declines are more likely due to recent environmental changes, pathogen 

virulence, or changes in host susceptibility (Kilpatrick et al. 2010). The earliest case for 

chytridiomycosis was found in Xenopus laevis frog specimens in 1938 from Africa, 

where Bd showed stable endemic infections (Weldon et al. 2004). It is believed by some 

researchers that this disease originated from Africa, and spread to other places during 

the international trade in X. laevis, which began in the mid-1930s (Weldon et al. 2004). 

NPH is supported by the patchy distribution of Bd (Figure 3) and the idea that 

amphibian world trade is driving the spread of chytridiomycosis (Fisher and Garner 

2007). EPH holds the idea that since Bd had already been found in amphibian 

populations decades before the huge declines, the sudden occurrence of 

chytridiomycosis is related to the environmental variables that have occurred recently 

(e.g. global climate change). 
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Figure 3. Batrachochytrium dendrobatidis (Bd) distribution. a. Global distribution of Bd by the Global Mapping Project (Bd-Maps). 
Different colors represent different positive quantities. b. The distribution of Bd in the U.S. c. The distribution of Bd in the New York State. 

The red dots represent the infected localities while the white and blue dots represent the negative sites.

a 

c 

b 
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Generally, there are two methods to detect this disease: one is the histological 

examination developed by Berger et al. (2002) and the other is the real-time Taqman 

PCR (qPCR) assay developed by Boyle et al. (2004). Histological examinations usually 

include the necropsies of animals, identification of Bd lesions, immunoperoxidase (IPX) 

staining, and the morphology of fungal zoospores (Berger et al. 2002). Histological 

examinations usually take a relatively long time, and require the whole body or a large 

part of the animal, which will affect the survival of diagnostic subjects and hence is 

disadvantageous for the conservation of amphibians. In comparison, the qPCR method 

is less invasive, for it only needs very small parts (tail clips, toe clips; Boyle et al. 2004) 

or swabs (Kriger et al. 2006a) of the individuals. It can also be used to test hundreds of 

samples in a single run of only two hours and it is easier to set up a unified quantitative 

standard (copy numbers of the target DNA per reaction) than the histology method.  

Studies have also shown that qPCR has a higher sensitivity, specificity, repeatability 

and reproducibility than histological methods in Bd detection (Boyle et al. 2004; Kriger 

et al. 2006a; Hyatt et al. 2007). Overall, qPCR is undoubtedly more convenient, with a 

higher accuracy and provides a more rapid way to detect Bd.  

Various sampling types have been used in the qPCR detection assay including 

bathing (bathing the animals for 30 minutes) (Hyatt et al. 2007), swabbing (Hyatt et al. 

2007), and toe clipping (Boyle et al. 2004). Of these, swabbing is the most common 

sampling type for Bd detection. Batrachochytrium dendrobatidis zoospores colonize on 

the stratum corneum, and are usually abundant in the ventral abdomen, hind limbs and 

feet of frogs (Longcore et al. 1999; Berger et al. 2005b). Swabbing from these places 

increases the likelihood of detection of Bd zoospores. Swabbing is preferred by 

researchers because it is more convenient, sensitive and non-invasive (Kriger et al. 

2006b; Hyatt et al. 2007). However, a recent study showed individual bias exists on the 
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swabbing experiences done by different swabbers (Simpkins et al. 2014). Toe clips and 

bathing are also effective methods for the qPCR detection, however toe clips are not 

ideal sampling types for some ethical issues (will cause the animals unnecessary levels 

of pain, stress and disease), and bathing is inconvenient for the field work (Hyatt et al. 

2007). To my knowledge, tail clips from salamanders have not been used for Bd 

detection. Tail clips require fewer sampling skills and do not have major negative side 

effects to the animals (Foster 2006; Jensen 2013). This study examined if it is possible 

to detect Bd in some other sample types, such as tail clips, dorsum tissue, blood, and 

eggs. 

 
The Hellbender (Cryptobranchus alleganiensis) 

The hellbender (Cryptobranchus alleganiensis) is a large and fully aquatic 

salamander that is endemic to the eastern United States (Petranka 1998). The hellbender 

is characterized by the dorsoventrally flattened body and head, keeled tail, and folded 

skin along each side. Its body is usually brown or gray with varying amounts of dark 

spots. It has small eyes without eyelids and a single open gill slit on each side of its 

body (Figure 4). Adult hellbenders range in size from 30 to 74 cm total length (Petranka 

1998). Hellbenders usually have long lifespans; it takes 5-8 years to reach sexual 

maturity, and they can live more than 25-30 years in the wild (Petranka 1998). Their 

breeding season begins in mid-August and lasts until mid-September, during which 

they may move short distances to reach the breeding sites (Mayasich et al. 2003). A 

single female hellbender can deposit between 200 and 400 eggs, and several females 

may deposit eggs in the same nest (Mayasich et al. 2003). Hellbenders generally live in 

cool, fast-flowing, well oxygenated and rocky streams (Petranka 1998; Mayasich et al. 

2003; NYSDEC). They use large flat rocks, logs or boards for cover and nests 
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(NYSDEC). Hellbenders mainly use their folded skin for cutaneous gas exchange 

instead of pulmonary respiration (Mayasich et al. 2003). 

 

 

 

Figure 4. Eastern Hellbender physical characteristics (photo used with permission by 
John White). 

 

There are two subspecies of the hellbender, the Eastern Hellbender 

(Cryptobranchus alleganiensis alleganiensis) and the Ozark hellbender 

(Cryptobranchus alleganiensis bishopi). The Ozark hellbender only exists in 

southeastern Missouri and adjacent Arkansas while the Eastern Hellbender exists more 

widely; from southern New York to northern Georgia with a west edge of Missouri 

(Figure 5; NYSDEC). The Ozark hellbender is an endangered species (Environmental 

Conservation Online System). The Eastern Hellbender is listed as endangered in 

Maryland, Ohio, Illinois and Indiana; is threatened in Alabama, and is listed as a special 

concern species of New York (NYSDEC).  
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Figure 5. Range of the Eastern Hellbender (Cryptobranchus alleganiensis alleganiensis) 

and the Ozark Hellbender (Cryptobranchus alleganiensis bishopi) (NYSDEC; map 
used with permission of NYSDEC). Cross lines indicate the range of the Eastern 

Hellbender and parallel lines are the range of the Ozark hellbenders. 

 

Just like many amphibians, hellbender populations have been declining widely and 

sharply for decades, including in the Missouri River Drainage (Wheeler et al. 2003), 

Allegheny River Drainage (Foster et al. 2009), and southern Indiana (Burgmeier et al. 

2011). In New York State, the hellbender exists only in the Allegheny and Susquehanna 

drainage basins (Figure 6; NYSDEC). Research conducted by Foster (2006) has shown 

apparent declines of the Eastern Hellbender in the Allegheny River drainage of New 

York in the past twenty years (Foster 2006; Foster et al. 2009). More recent work 

indicates that the New York Susquehanna populations may be functionally extirpated 

(Foster pers. comm.). Specific reasons for this decline are still not well-defined. 

Potential threats to hellbenders are habitat loss (siltation, changes in water quality, and 

water impoundment), overutilization by people (for education, entertainment or 
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commercial purposes), predation, lack of reproduction and recruitment, and some 

environmental issues (Mayasich et al. 2003).  

 

 

 

Figure 6. Eastern Hellbender distribution map in New York State as reported by the 
Amphibian and Reptile Atlas Interim Report (NYSDEC; map used with permission of 

NYSDEC). Data collection was from 1990-2007. 
 

 

The occurrence of Bd infection in the Ozark hellbender in 1969 in Missouri is the 

earliest reported occurrence in hellbenders (Bodinof et al. 2011). Batrachochytrium 

dendrobatidis has also been found in hellbender populations of Georgia (Gonynor et al. 

2011), Arkansas (Briggler et al. 2008), Eastern Tennessee (Souza et al. 2012), Ohio 

(Bales et al. 2015), Virginia (Bales et al. 2015), Kentucky (Lipps 2009; Bd-Maps), 

Pennsylvania (Regester et al. 2012; Bales et al. 2015) and New York (Bales et al. 2015) 

(Figure 7).  
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Figure 7. Map of former studies about Batrachochytrium dendrobatidis prevalence on 
hellbenders. Red crosses indicate Bd (+) locations, with the earliest year of the positive 

samples found in relevant state. Red pins show the positive sites in this study, with an 
earliest year of 2004. Map was developed by ArcGIS online (ArcGIS Online) using 

details of Bd sites from Briggler et al. 2008; Lipps 2009; Gonynor et al. 2011; Souza et 

al. 2012; Regester et al. 2012; Bales et al. 2015. 
 

There have been very few studies about Bd prevalence in NY. In this study, qPCR 

assays were applied to detect the existence of Bd in the Eastern Hellbender samples 

collected between 2003 and 2014 in the Allegheny River and Susquehanna River 

watersheds of New York and Pennsylvania, to partially explore the prevalence of Bd in 

NY and PA and the efficacy of using archived tail clip samples for historical detection. 

This study could also contribute to the conservation of hellbenders (C. alleganiensis). 

This salamander exists only in a few states in the U.S., so that not many groups are 

doing the relative studies. This study would undoubtedly provide some information for 

the epidemicity of chytridiomycosis in this animal, and its relationship with population 

declines. 
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OBJECTIVES 
The objectives of this study are to: 

1) First utilize archived samples collected for genetic analysis and determine if they 

can be used for Batrachochytrium dendrobatidis detection in hellbenders. 

2) If these samples are viable for Bd detection, provide baseline data of Bd 

prevalence in the Allegheny and Susquehanna River watersheds in New York and 

Pennsylvania.  

3) Compare Bd detection sensitivities among different sample types, including 

blood samples, swabs, tissue samples (tail clips and dorsum skin samples), and eggs.  

  



15 
 
 

 

 

MATERIALS AND METHODS 

Samples and Positive controls 

A total of 157 hellbender samples including skin tissues (both tail and dorsum), 

swabs, blood, and eggs collected between 2004 and 2014 were provided by different 

groups (Table 1). Most of the samples were collected between June and September. 

Negative samples were swab samples from Xenopus laevis frogs housed in the SUNY 

Buffalo State Biology Department and ddH2O.  

 

Table 1. Sample sources and sample types 
 

Sources Sample types 

Robin Foster and Meghan Jensen, SUNY 

Buffalo State 

59 tail clips, 22 swabs, 5 blood 

samples, 1 egg sample 

Elizabeth Marion Bunting, Cornell 

University 

2 tail tissues, 2 dorsum skin 

Peter Petokas, Lycoming College 18 tail clips 

Kenneth Roblee, NYSDEC 21 tail clips, 3 swabs 

Tom Hayes, Pittsburgh Zoo 2 tail clips 

Eric Chapman, Western PA 

Conservancy 

22 tail clips 

 

Four areas within the Allegheny River and Susquehanna River drainages in New 

York (NY), and Pennsylvania (PA) were studied (Figure 8). Blood samples were 

collected if a hellbender bled during the PIT (Passive Integrated Transponder) tag 

insertion by blotting on a filter paper and allowing to air dry. These samples were stored 

at room temperature until DNA extraction. Tail tissue samples were clipped from the 

end of the captured hellbenders’ tails with sterile scissors and placed in alcohol (Foster 

2006). Swab samples were collected following a surface swabbing protocol (Appendix 

A). Swab and tail clip samples were immediately placed on ice after collection in the 

field and kept cold until they were further processed in the lab. 
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Figure 8. Map of study areas in New York and Pennsylvania. Blue circles indicate the Allegheny River drainage, purple circles indicate 

the Susquehanna River drainage. Numbers are the number of samples collected in each area. Map was developed by ArcGIS online (ArcGIS 

Online). 
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DNA was extracted using a modified extraction protocol of the DNEasy Blood and 

Tissue kit by Qiagen (Valencia, CA, Appendix B, C). Quantitation of DNA was then 

performed on the BioRad VersaFluor Fluorometer or the Implen P-Class Nano 

Photometer (Foster 2006; Jensen 2013). DNA was placed in 1X TE buffer (10 mM 

Tris-HCl, 1 mM disodium EDTA, pH 8.0) and stored at 4 C.  

 
 

Real time PCR (qPCR) Method 

The real time PCR (qPCR) method developed by Boyle et al. (2004) was performed 

for the samples. The ChytrMGB2-probe, primers ITS1-3 and Chytr5.8S were used to 

amplify IST-1/5.8S junction of rDNA to detect Batrachochytrium dendrobatidis (Table 

2; Boyle et al. 2004). Amplification conditions for this reaction were 50 C for 2 min, 

95 C for 10 min followed by 50 cycles of 95 C for 15 s and 60 C for 1 min.  

A Taqman probe was used in this study. The Taqman probe has a gene-specific 

sequence and can bind the target sequence between the two PCR primers (Life 

Technologies 2012). The 5’ end of the Taqman probe is a “reporter”, which is a 

fluorescent dye that can report the amplification of the target. On the 3’ end of the probe 

is a quencher that quenches the fluorescence of the reporter when the probe is intact. 

When the probe is damaged during the PCR, the reporter will be released and fluoresce. 

There are two kinds of Taqman probes, minor groove binder (MGB) and non-MGB. 

The MGB probe was used in this study, which has a higher specificity compared with 

the traditional TAMRA probe (Life Technologies 2012). 
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Table 2. Primers and probe sequences (Boyle et al. 2004). 
 

Primers Sequence (5’-3’) Probe Sequence 

Target  

Sequence 

Length 

ITS1-3 

Chytr 
CCTTGATATAATACAGTGTGCCATATGTC 

ChytrMGB2-probe 

6FAM-

CGAGTCGAACAAAAT-

MGBNFQ 

146bp 
5.8S 

Chytr 
AGCCAAGAGATCCGTTGTCAAA 

 

 

A standard curve was developed using linearized synthetic plasmids constructed 

by Pisces Molecular (Boulder, CO). The plasmid contains the rDNA internal 

transcribed spacer (ITS) region of Bd strain JEL 270. The Bd ITS region contains the 

target sequences for both the forward and reverse primers of the Boyle qPCR Bd assays. 

The plasmid was linearized and serially diluted in 0.1×TE by Pisces Molecular. 

Dilutions were from 2.1×106 to 2.1×10-2 molecules/µL. DNA of two swabs from two 

Xenopus laevis (that were not infected with Bd, based on comparing with standards) 

and ddH2O were used as negative controls in each run. 

Because I used 5 µL of DNA per reaction (Appendix D), the ITS-1 copies for the 

standard dilutions were from 1.05×107 to 1.05×10-1 molecules/reaction (concentrations 

per microliter times five). After preliminary tests using all of the standard dilutions and 

some of the samples, a tenfold serial dilution series ranging from 1,050 to 1.05 copies 

of the target sequence was used as a standard curve. A series of standard dilutions was 

run on each plate. Each unknown sample was tested in triplicate in three separate runs, 

and samples were considered positive only if the results were positive at least twice. 

Samples were run in a 25 µL reaction (Appendix D). Negative controls were 5 µL 

ddH2O with the TaqMan Universal Master Mix II (Life Technologies, Grand Island, 

NY, Appendix D). Negative DNA controls were 5 µL frog swabbed DNA or 5 µL 
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ddH2O with the Master Mix. Each reaction plate contained 10% negative controls (half 

frog-swab negative control and half water negative control).  

Assays were performed on a CFX96 Real-Time System, with a C1000 Touch 

Thermal Cycler (BioRad Laboratories, Hercules, CA). Real-time PCR efficiency, slope, 

and R2 values were calculated with Bio-Rad CFX Manager V3.1 (BioRad Laboratories), 

with the baseline-subtracted curve-fit setting. Slope and R2 were calculated with the 

standard curves determined with the quantitation standards described earlier. Efficiency 

is calculated as 10(-1/slope) -1 (Life Technologies 2012) and indicates how efficient the 

PCR reaction proceeded based on the concentrations of the standard dilutions. The 

baseline of the real-time PCR reaction is the signal level during the initial cycles of 

PCR (usually 3 to 15 cycles), and can be set automatically. The threshold of the reaction 

is the signal level that reflects a statistically significant increase over the calculated 

baseline signal. It is usually automatically set as 10 times the standard deviation of the 

fluorescence value of the baseline (Life Technologies 2012). Thresholds can also be 

manually defined. Since the target DNA concentration was relatively low for most of 

the samples, the auto-set threshold was so low that it may lead to some false positives. 

In this study, the threshold was set manually to be conservative about what was called 

a positive result. It was set in the middle or slightly above the middle of the geometric 

phase where all of the amplification curves were straight and parallel to one another 

(the highest precision) for each run while viewing the data in a logarithm scale (Ask 

TaqMan). The second threshold setting criteria was that it should be higher than the 

plateau of any negative water samples (these were all lower than the half-way point of 

the geometric phase). Pathogen prevalence was calculated using the number of infected 

animals divided by the total sample size and included 95% binomial confidence 

intervals.  
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RESULTS 

 
A standard curve was generated for each of the 96-well plate reactions (Figure 9). 

The efficiencies of the reactions were all within 80-110%, with R2 greater than 0.970.  

 

 

 

Figure 9. An example standard curve for qPCR reactions. Cq-quantification cycle, 
cycles needed to reach the threshold. E=89.1%, R2=0.997, Slope=-3.615, y-int=41.432 

(for definitions of these numbers, see the Methods section). Each run contained a 

standard curve. 
 

 

The amplification curve was used to calculate the DNA content during the PCR 

reaction (Figure 10). The curves that rose above the manually set threshold were 

considered positives while the negatives never reached the threshold. The initial DNA 

concentration was then calculated by its linear relation with Cq. All positive samples 

were above the threshold for each of three runs (with a relatively low standard deviation; 

Figure 11).  
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Figure 10. The amplification curve of some of the samples. RFU- Relative Fluorescence 

Units. This shows two positive samples with four known positive dilutions (initial ITS-
1 copy numbers from 1.05 to 1050 per reaction). Solid arrows point the amplification 

curves of standard dilutions, and dotted arrows point the tested samples. 

 

 

Twenty-four of 157 (prevalence = 15.3±5.7%, 95% CI) samples were found to be 

Batrachochytrium dendrobatidis positive in this study. The concentration of ITS-1 

DNA (copies/µL) in the samples ranged from less than one copy to tens of thousands. 

Average concentrations of positive samples were converted to napierian logarithm 

forms as shown in Figure 11. The lowest concentration that could be detected was 0.016 

copies/µL (data not shown). Samples with negative natural logarithmic results (No. 18 

to 24, Figure 11) were considered as positive suspicions that have a high probability of 

being positive for the following reasons. First, their concentrations were very low (less 

than one ITS-1 copy/µL), which might lead to some technical errors. The lowest 

standard dilutions, which were equivalently low concentrations (0.21 molecules/µL), 

even turned out to be negative in a few cases. Second, the lab frog swabbed samples 

turned out to be slightly positive (less than one copy/μL) in a few cases. However, these 

slightly positive results were not consistent in three runs, which means if the frog swab 
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turns out to be positive one time this does not mean it will be positive in the next run. 

And the concentrations of positive samples were all higher than the frog swab 

concentrations in the same runs, and were at least one copy/µL. Finally, the shape of 

the amplification curves for these suspects were smooth and performed just like other 

positives. Although the exact copy number results were not reliable due to the precision 

of qPCR, they should be considered as positives qualitatively.  

The quantification cycles (Cq, cycles needed to reach the threshold) for the tested 

samples ranged from 24 to 45. ITS-1 gene copy numbers per microliter (for the positive 

samples) are shown in Appendix E, with 95% confidence intervals. The coefficient of 

variation (CV) of results varied from 6% to 116%. The coefficient of variation was very 

high (90%-116%) for samples 22, 23, 24 (the lowest concentration samples) but the CV 

of most of the others ranged from 6% to 50%.  

 

 

 
Figure 11. Napierian logarithm of the average ITS-1 concentrations (± standard errors 

of three runs) for Batrachochytrium dendrobatidis positive samples. Samples labeled 
with two asterisks (**) were dorsal tissues, with one asterisk (*) were tail clips, and the 

rest were swabs. 
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Two positive samples were from before 2010 and were tail clips (No. 18 and 23, 

Table 3); the earliest of these was collected in 2004 in an Allegheny River tributary (No. 

18, Table 3). There were a total of 54 samples collected before 2010 with a Bd 

prevalence of 3.7±5.2%, 95% CI and 103 samples collected after 2010 with a Bd 

prevalence of 21.4±8%, 95% CI.  

Batrachochytrium dendrobatidis positive rate was higher in recent years compared 

with before 2010, which were all tail clip samples. Where there were both swabs and 

tail clips in the same time period (post-2010), the positive rate for swabs was higher 

than that of tail clips (Table 4). No swab samples were available from before 2010.  

Most of the available samples were tail clips (124), some were dorsum skin, swabs 

and blood samples, and only one egg sample (Table 5). Ten out of 126 (95% CI: 

8.0±4.3%) tissue samples turned out to be positive for Bd, while 14 out of 25 (95% CI: 

56.0%±20.5%) swab samples were positive. The two dorsal tissues from dead 

hellbenders were both Bd positive (No. 4 and 9 in Table 3 and Figure 11). None of the 

blood and egg samples had detectable amounts of Bd (Table 4 and Table 5). Over half 

(14 out of 24) of the positive samples were swabs although over two thirds of the 

available samples were tail clips. Most of the high Bd concentrations were detected in 

swab samples while tail clip samples have relatively low concentrations (Figure 11). 

These results suggest that Bd is more likely to be detected in swabs and at higher 

concentrations. However, since the date collected and individuals varies in the tests, 

further evidence is needed to draw this conclusion. 
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Table 3. Sampling type, collection date and location for Batrachochytrium 

dendrobatidis positive samples. Allegheny Trib (1-3) and Allegheny main are from the 
New York Allegheny watershed, Allegheny Trib PA is a tributary in the Pennsylvania 

Allegheny watershed, Susquehanna Trib is from a tributary in the New York 
Susquehanna watershed.  
 

Sample 

No. 

Sample 

Type 
Capture Time Capture Place 

1 swab Sep, 2014 Allegheny Trib 1 

2 swab Sep, 2014 Allegheny Trib 1 

3 swab Sep, 2014 Allegheny Trib 1 

4 dorsum Aug, 2014 
Released to Allegheny Trib 

2 

5 swab 2013-2014 Allegheny Trib 2 

6 swab 2013-2015 Allegheny Trib 2 

7 swab June, 2013-2014 Allegheny Trib 2 

8 swab Sep, 2014 Susquehanna Trib 

9 dorsum Aug, 2014 Allegheny Trib 2 

10 tail Sep, 2014 
Dead animal – exposed to 

Allegheny main water 

11 swab Aug, 2013 Allegheny Trib 2 

12 tail Sep, 2014 
Dead animal – exposed to 

Allegheny main water 

13 swab June, 2013-2014 Allegheny Trib 2 

14 swab June, 2013-2014 Allegheny Trib 2 

15 swab June, 2013-2014 Allegheny Trib 2 

16 tail Aug, 2012 Allegheny Trib 3 

17 swab Aug, 2013 Allegheny Trib 2 

18 tail Sep, 2004 Allegheny Trib 2 

19 tail Aug, 2012 Allegheny main 

20 tail Sep, 2012 Allegheny Trib PA 

21 swab Aug, 2013 Allegheny Trib 2 

22 swab June, 2013-2014 Allegheny Trib 2 

23 tail Sep, 2005 Allegheny Trib 2 

24 tail Aug, 2012 Allegheny main 

 

 

Table 4. Results of Batrachochytrium dendrobatidis detection classified by year and 
sample types. P-Positives, N-Negatives. Positive rates were in the parentheses. 

 
 Total 

Number 

Tail Swab Dorsal tissue Others (Blood 

and Egg) 

  P N P N P N P N 

Pre-2010 54 2(4.2%) 46 0 0 0 0 0 6 

Post-2010 103 6(7.7%) 72 14(56%) 2(100%) 0 0 0 0 
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Table 5. Number of Batrachochytrium dendrobatidis positives and negatives for 

different sample types. P-Positives; N-Negatives. 
 

 Total P N 

Tail Clip  124 8 116 

Dorsal Tissue 2 2 0 

Swab 25 14 11 

Blood 5 0 5 

Egg 1 0 1 

 

To further explore the difference among different sample types, for 41 individuals, 

both tail clip and swab samples were collected. Researchers at Cornell University used 

the same qPCR method to test the swabs, where the same animal tissue samples were 

tested in this study. The sensitivities for these two sample types were different. For 43.9% 

samples, swabs and tail clip turned out to have the same results, which means that 

results were both positive or both negative for the two sampling types; twenty-one of 

the swab samples were positive while the tissue samples showed negative results; two 

tail clips were positive (low concentrations) while no Bd was detected in the swab 

samples (Table 6; No. 19 and 24, Figure 11). Overall, the Bd positive rate for these 

samples using tissue samples was 12.2% (5 out of 41); the Bd positive rate for these 

samples using swabs were 58.5% (24 out of 41). An additional two individuals had both 

dorsal tissues and swab samples, and for both of these the results were Bd positive. 

 

Table 6. Comparison of Batrachochytrium dendrobatidis results for both swabs and tail 
clips. P-Positives; N-Negatives. 

 
 P-tail N-tail 

P-swab 3 21 

N-swab 2 15 

 

Including all of the sampling types, Bd exists in the Allegheny River drainage of 

NY (prevalence = 19.5%, 22 out of 113) and PA (prevalence = 4.8%, one out of 21), 
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and in the Susquehanna River drainage of NY (prevalence = 50%, one out of two), but 

not PA (21 samples tested). By the detection of only tail clip samples, Bd prevalence in 

NY was 8.5±6.1% (seven out of 82; 95% CI); in PA was 2.4±4.8% (one out of 42; 95% 

CI). By the detection of swab samples, Bd prevalence was 56.0±20.5% (14 out of 25; 

95% CI) in NY. The Bd prevalence distribution by river drainages is shown in Figure 

12 a and b. In the Allegheny River drainage, New York, seven out of 81 samples were 

positive (8.6%); In the Allegheny River drainage, Pennsylvania, one out of twenty-one 

samples (4.8%) turned out to be Bd positive; no positives were found in the 

Susquehanna river drainage in NY and PA by testing the tail samples (Figure 12a). As 

for the swab samples, 13 out of 24 (54.2%) samples were positive in the Allegheny 

River basin, one (100%) sample was positive in the Susquehanna River basin (Figure 

12b). The positive rate in NY detected with swab samples was much higher than it with 

tail clips.  

Most of the Bd positive animals did not show significant clinical signs such as 

shedding skin, discoloration, or lethargy when they were caught (Foster, DEC and 

Cornell University pers. comm.). Only one was found lethargic and markedly blue in 

color. Four of the hellbenders were known dead (sampling was done after death), and 

the dead all tested as Bd positive (No. 1, 2, 10, 12, Figure 11). 
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Figure 12. Map of Batrachochytrium dendrobatidis prevalence on Eastern 

Hellbenders in Pennsylvania and New York. a. Bd prevalence in tail clip samples; b. 
Bd prevalence in swab samples. Batrachochytrium dendrobatidis has been found in 

both the Allegheny and Susquehanna River drainage. Positive and negative proportions 
are indicated by pie charts. Orange indicates positive proportions while blue indicates 

negative proportions. Map was developed by ArcGIS Version 10.2.2 on a world hydro 

basemap.  
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DISCUSSION 

Batrachochytrium dendrobatidis broadly exists in hellbender populations (Figure 

7). The earliest record of the occurrence of Bd infection in the Ozark Hellbender was 

in Missouri in 1969 (Bodinof et al. 2011). Recently, several studies have shown broad 

Bd prevalence in hellbenders throughout the U.S., including New York (Bales et al. 

2015), Pennsylvania (Regester et al. 2012; Bales et al. 2015), Ohio (Bales et al. 2015), 

Virginia (Bales et al. 2015), Kentucky (Lipps 2009; Bd-Maps), Tennessee (Souza et al. 

2012), Georgia (Gonynor et al. 2011), Missouri (Briggler et al. 2008; Bodinof et al. 

2011) and Arkansas (Briggler et al. 2008). As for the river drainages involved in this 

study, Bales et al. (2015) found Bd positive hellbenders from swab samples (sampled 

in 2012 and 2013) in the Allegheny River drainage of NY and PA. Regester et al. (2011) 

found Bd positives in pooled swab samples of the Allegheny-Ohio and Susquehanna 

River drainage, PA (sampled in 2009 and 2010).  

From my study of the hellbender samples from the last ten years (2004-2014), the 

overall Bd positive rate in NY and PA area was 15.3%, with 24 out of 157 samples 

testing positive. Batrachochytrium dendrobatidis has been found in the Allegheny 

River drainage of PA and NY, and Susquehanna River drainage of NY (Figure 12); no 

Bd positives were found in the Susquehanna River drainage of PA in this study. By 

comparing the tail samples, the prevalence of Bd increased from 4.2% before 2010 to 

7.7% after 2010 (Table 4). This may due to the different sample types I used. 

The two earliest positive samples I tested were from 2004 and 2005 from the 

Allegheny River drainage, New York (No. 18 and 23, Table 3, Figure 11). This showed 

that Bd pathogen has existed in the Eastern Hellbender populations in the Allegheny 

River drainage of NY for at least 10 years. To my knowledge, 2004 is the earliest record 

of Bd existence on the Eastern Hellbender in NY.  
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Another important finding in this research is some tissue samples can also be used 

for Bd detection. In this study, swabs, blood, eggs, tail clips and dorsum tissues were 

used for Bd analysis. Most of the researchers are now using swabs to test for Bd by 

qPCR. The reason tail clips were used in this study was that all of the hellbender 

samples in the lab (from before 2010) were archived as tail clips. A limited number of 

egg and blood samples were tested but Bd was not detected in these samples (Table 5). 

The lack of Bd in the egg and blood samples was expected because Bd is an epidermal 

disease. However, the results of this study show that Bd can be detected in dorsum and 

tail tissues. Dorsum tissues of frogs usually do not contain many Bd zoospores, which 

probably is due to the serous glands that produce antifungal peptides on frog dorsum 

skin (Berger et al. 2005b). However, hellbenders do not have serous glands, which may 

increase the existence of Bd zoospores in the dorsal tissues. Currently, Bd detection in 

skin tissue samples is still done by histological methods (Bodinof et al., 2011), which 

requires more time and is not as sensitive as qPCR methods (Hyatt et al. 2007). In 

contrast, many tissue specimens collected in previous studies can be scanned rapidly 

for Bd using the real-time PCR method.  

However, the sensitivities of qPCR Bd detection are different among different 

sample types. Tail clip samples tend to have lower estimations of the Bd prevalence 

compared with swabs. The total positive rate (number of total samples divided by 

positive numbers) for dorsum tissues was 100% (just two samples), tail clips was 6.5% 

(8 of 124), and swab samples was 56.0% (14 of 25). To evaluate the detectability of Bd 

from tail clips and swabs, samples from 41 animals from which both swabs and tissue 

samples had been collected were compared. For this group of individuals, the Bd 

incidence percentage estimated by tail clips was 12.2%, significantly lower than the 

estimation of 58.5% by the swabs (Table 6). In addition to this, for my study of the 
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Allegheny River drainage, NY, the Bd infection rate estimated by swab was 54.2%, 

which was much higher than the infection rate estimated by tail clips of 8.6%, despite 

having many more tail clip samples to test than swab samples (Figure 12). Bales et al. 

(2015) found a Bd prevalence of 10% by using ten swab samples in the same area 

sampled for the current study. Furthermore, although I did not find any Bd positives 

from the tail clip samples from Susquehanna River drainage in PA, another researcher 

has found a high Bd infection rate of 40.4% in swab samples from the same area 

(Petokas pers. comm.). One possible factor is that these tail clips were very small tissue 

samples compared to those collected in the NY drainage (McMillan pers. comm.) and 

may not contain as much dermal tissue. These issues all indicate that tail clips have 

lower positive rates compared with swab samples, however, which sample type is more 

accurate in estimating the real Bd infection prevalence rate remains unclear. Even in 

the positive samples, swabs usually turned out to have higher Bd concentrations 

compared with tail clips (Figure 11). The difference between swabs and tail clips may 

due to the uneven distribution of Bd on the hellbender bodies. Batrachochytrium 

dendrobatidis is usually abundant in the ventral abdomen, hind limbs and feet of frogs, 

where the animals were swabbed (Longcore et al. 1999; Berger et al. 2005b; Appendix 

A). Swabbing from these places increases the likelihood of detection of Bd zoospores 

but might not indicate actual infection. Interestingly, the lowest average detected 

prevalence of Bd in NY occurred in July, and remain lowest until September (Lenker 

et al. 2014), while most of the current study samples were collected from June to 

September, which may mean the current study samples were at the lowest 

concentrations of Bd, and thus, the lowest detection potential. Lenker et al. (2014) found 

the highest Bd infection peaked in May and October, which suggests tail clips collected 

during this time might be more effective at Bd detection. 
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Based on my research, future studies can use the museum specimens for Bd 

detection (although the prevalence may be underestimated), which can help researchers 

have a better understanding of the historical origin of this disease. Specimens stored in 

alcohol should be used, because DNA for the TaqMan assay cannot be extracted from 

samples stored in formalin (Hyatt et al. 2007).  

The Allegheny watershed (NY) and Susquehanna watershed (PA) both have high 

Bd prevalence based on Petokas (pers. comm.) and my study on the hellbender swab 

samples. The high Bd prevalence in these two river drainages coincide with the 

hellbender declines that have been found in NY and PA (Foster et al. 2009; Petokas 

pers. comm.). It is possible, among other potential causes, that Bd contributed to the 

hellbender declines in these areas. Batrachochytrium dendrobatidis is known to be 

related to global amphibian declines, and can cause severe declines to fully-aquatic 

species with low fecundity (Daszak et al. 1999; Skerratt et al. 2007). The study by 

Foster (2006) found very few juvenile hellbenders during their breeding season, which 

probably indicates a low reproductive success for hellbenders in the Allegheny River 

drainage of New York.  

In studies by Pessier et al. (1999) and Bales et al. (2015), no obvious clinical signs 

and specific body conditions were found for most Bd positive individuals. Likewise, 

for most of the Bd positive individuals in this study, no specific Bd symptoms were 

observed at the time they were sampled. Only one hellbender was found lethargic and 

markedly blue in color. Four of the Bd positive animals were known dead, and then 

sampled for Bd detection. One reason for low observed symptoms may be that most of 

the animals were caught early in their infectionand released after sampling, so the 

ultimate fate of these animals is unknown. Another possible reason may be that Bd 
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symptoms occur in the later infectious stages, and hellbenders will die soon after 

severe clinical signs occur (Nichols et al. 2001; Whittaker and Vredenburg 2011).  

The qPCR results showed the copy numbers of ITS-1 DNA per microliter, but not 

actual zoospore numbers. Some former studies transformed the qPCR results to 

zoospore numbers by dividing them by the ITS-1 copy numbers per zoospore. However, 

in a recent study, a high strain variability in ITS-1 copy number was found (Longo et 

al. 2013). ITS-1 copy numbers range from 10 to 144 copies per single zoospore among 

different Bd strains (Longo et al. 2013), which makes it difficult to unify the results 

among different labs or locations. Using single ITS1 PCR-amplicons as the absolute 

standard in conjunction with current quantitative assays is a better method to determine 

copy number variation and provide universal estimates of pathogen zoospore loads 

from field-caught amphibians (Longo et al. 2013). 

The initial ITS-1 copies/reaction (calculated by copies/µL times five, since 5 µL of 

DNA sample was used per run) for some samples were less than 1 copy/reaction (No. 

22-24, Figure 11; Appendix E), which does not have actual meaning. The quantities 

might not be very reliable for these extremely low concentrations for they have very 

large CV. But these low positives showed the sensitivity of the qPCR assay, for it can 

show positive even at very low DNA concentrations. The CV of middle ITS DNA 

concentration samples (tens and hundreds copies/µL) were small, suggesting that these 

higher concentrations had more consistent results. The threshold was manually set 

conservatively (in an attempt to avoid false positives), so that even results with very 

low ITS-1 concentrations should be considered as positives. 

However, a Bd positive result does not directly indicate that the positive animals 

have chytridiomycosis. This is especially true for the positive ones with low ITS-1 

DNA concentrations, the animals could just be the carriers of Bd zoospores, without 
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the development of zoosporangia. “Vredenburg’s 10,000 Zoospore Rule” suggests that 

for most amphibian species, animals will die when they reach the Bd threshold of 

10,000 zoospore equivalents/swab (Briggs et al. 2010; Kinney et al. 2011). Despite the 

zoospore loads, the susceptibility of different individuals under different conditions 

also varies, so that more evidence (maybe histological analysis) will be needed to tell 

if a hellbender was infected. The chytrid susceptibility of an animal could be influenced 

by species (Blaustein et al. 2005; Bancroft et al. 2011; Searle et al. 2011), 

environmental temperature (Maniero and Carey 1997; Woodhams et al. 2003), life 

stage (Lenker et al. 2014), sex, and maybe even other health conditions. Bancroft et al. 

(2011) found different susceptibilities between species was dependent on body size at 

maturity, egg laying behavior, taxonomic order and family, and reliance on water. In 

the same species, the Bd susceptibility varies between larvae and adults (Bancroft et al. 

2011). As for the environmental factors, cool seasons and high-elevation are more 

likely to lead to the death of hosts (Bancroft et al. 2011). 

An idea for future study is to attempt to detect both Batrachochytrium 

salamandrivorans and Bd from environmental DNA (eDNA) samples collected in the 

Allegheny and Susquehanna watersheds to have a better understanding of the 

distribution of these pathogens. Recent work on aquatic animals uses eDNA for 

detection of some rare species (Environmental DNA). Environmental DNA is DNA 

found in the environment. This is based on the fact that all aquatic animals can leave 

DNA in the water through feces, urine or skin cells (Environmental DNA). This DNA 

dissolves in the water and becomes diluted as it spreads over a larger area. 

Batrachochytrium dendrobatidis zoospores may also be detected in these water samples. 

The McMillan Lab at Buffalo State collected extensive eDNA samples throughout both 

of the Allegheny and Susquehanna watersheds in NY and PA during the summers of 
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2014 and 2015. Samples were collected by using the protocol developed by Santas et 

al. (2013). Water was collected from the stream, run through a fine filter, and total DNA 

was extracted from the filters for each sample (Foster pers. comm.). A duplex real-time 

PCR method was developed recently to detect two chytrid pathogens, Bd and Bs at the 

same time (Blooi et al. 2013). Future researchers could try the eDNA samples with this 

duplex real-time PCR to figure out the distribution of Bd and Bs rapidly. 
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CONCLUSION 

 Some people believe that a sixth major extinction event is underway (Wake and 

Vredenburg 2008), with a phenomenon of amphibian population declines and 

extinctions at unprecedented rates. An emerging infectious fungal disease, 

chytridiomycosis, may be one of the main reasons for these amphibian declines. This 

disease is mainly caused by Batrachochytrium dendrobatidis. In this study, I have 

detected this pathogenic fungus in the Eastern Hellbender populations from the 

Allegheny River drainage in New York and Pennsylvania, and the Susquehanna River 

drainage in New York using a qPCR assay. From this study, I found that Bd has existed 

in the hellbender populations of the Allegheny River drainage in NY from as early as 

2004. The existence of this disease may correlate with the apparent hellbender 

population declines (over the last 20 years) in the Allegheny River drainage of NY 

(Foster et al. 2009). In addition, I have successfully detected Bd in different sample 

types other than the commonly used swabs. I detected Bd in tail clip samples, dorsal 

tissues, and swab samples but not in eggs and blood samples. Compared with swab 

samples, tail tissues seemed to be less sensitive in Bd detection, and may underestimate 

the prevalence of Bd. In the analysis of 124 tail clips, I found Bd prevalence to be 8.5% 

in NY and 2.4% in PA. In 25 swab samples, I found the Bd prevalence in NY of 56.0%. 

This study has provided some baseline data on the Bd prevalence in NY and PA, and 

will contribute to the future study of the relationship between chytridiomycosis and 

amphibian population declines in these areas. 
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APPENDICES 

Appendix A. Amphibians Swabbing Protocol. 

(modified from http://amphibiaweb.org/chytrid/swab_protocol.html) 

Procedure: 

1. Preferably, capture amphibians by hand. Wear gloves when swabbing animals and 

change gloves between animals. If you are using a dip net, be aware that 

Batrachochytrium dendrobatidis zoospores could be caught on the net and 

transferred between individuals, therefore, use different nets whenever possible, or 

disinfect the net as often as you can (there is no perfect solution to this problem).  

2. Swab the underside or ventrum of adult/metamorphs 30 times. Remember you are 

in effect scraping small amounts of tissue from the skin. Some pressure must be 

applied, but this does not mean that you must squash the animal.  

1. For Frogs: Areas to target are the inguinal areas, thighs and webbing between the 

toes. Zamudio lab has standardized our swabbing as follows: 5 swabs each on R/L 

inguinal region, 5 swabs on each of 4 feet. 

2. For Salamanders: Areas to target include the underside of the tail and the backside 

of each of the limbs. Swab the back of each leg 5 times (20 total), the underside of 

the tail 5 times and the underside of the pelvic region 5 times for a total of 30. 

3. Break swab ~3cm from tip and drop into empty screw cap tube. The swab stick 

should not touch or bump against the top of the vial. Screw the cap on the vial and 

store in the shade. 

4. Samples can be kept a room temperature for a week or maybe longer, but it is best 

to keep the samples cool and placed as soon as possible in a 4 degree C freezer (the 

kind you have at home is fine). Avoid extreme high temperature and direct sunlight. 

Samples may be stored in a freezer for many months without problems. 

5. Analysis of swabs: We use quantitative PCR methodology as described by Boyle et 

al. (2004). 
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Appendix B. DNA Extraction Protocol for swab samples. 

Swab and Filter Paper Extraction Procedure (Modified by McMillan, 2014): 

1. Add filter/swab to 1.5mL microcentrifuge tube. 

2. Add 180 µL ATL buffer. 

3. Add 20 µL Proteinase K, vortex for 10 sec. 

4. Put into 56 C water bath (90 oscillations) for 1.5-3 hrs. Vortex occasionally 

during incubation, vortex 15s directly before proceeding to step 5. 

5. Move each sample to a Qiashredder spin column by moving the filter/swab with 

clean forceps and pipetting the rest of the liquid. 

6. Spin Qiashredder column 5min at 8000rpm. 

7. Replace Qiashredder columns with caps from the Qiashredder kit, label caps. 

8. Remove caps and add 200 µL AL buffer, vortex 10 sec. 

9. Incubate at 56 C for 10min. 

10. Add 200 µL of 100% ethanol and vortex for 10 sec. 

11. Pipette liquid into DNA easy mini spin column making sure to suck out as much 

liquid from the gauze as possible! (really suck it dry). 

12. Centrifuge at 8000 rpm for 1 minute, then discard collection tube. 

13. Add 500 µL AW1 buffer. 

14. Centrifuge at 8000 rpm for 1 minute, then discard collection tube. 

15. Add 500 uL AW2 buffer. 

16. Centrifuge at 14,000 rpm for 3 minutes. 

17. Discard bottom collection tube and place the filter part into a clean 1.5 mL 

microcentrifuge tube. 

18. Add 100 µL AE buffer, allow to sit 5 minutes. 

19. Centrifuge at 8000 rpm for 1 minute.  KEEP THE LIQUID!! 

20. Add 50 µL AE buffer and allow to sit 5 minutes (this could change depending 

on the extraction). 

21. Centrifuge at 8000 rpm for 1 minute.   

22. Discard filter part and store microcentrifuge tube in 4 C cooler. 
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Appendix C. DNA Extraction Protocol for tissue samples. 

Protocol for extracting DNA from Ethanol Preserved Tissue (Modified from Rayman, 

2010 and JL, 2013): 

1. Cup up to 25mg from samples. Blot ethanol on kimwipe to remove ethanol. 

2. Chop tissue into several pieces with razor blade. Use new razor blade for each 

sample to avoid cross contamination. 

3. Place pieces into labeled 1.5 mL microcentrifuge tubes.  

4. Add 180 µL ATL Buffer. 

5. Add 20 µL Proteinase K thoroughly by vortexing and incubate at 56 C in shaking 

water bath. Samples can be lysed overnight or a minimum of 3 hours. Add an 

additional 10 µL Proteinase K to each tube if large tissue pieces still present. 

Continue incubating and check periodically for complete lysing of tissue.  

6. Vortex for 15 s. Add 200 µL AL Buffer. Vortex to mix thoroughly. 

7. Transfer to 2 mL DNeasy Mini Spin Column. Spin 1 minute at 8000rpms. Discard 

collection tube and flow through (NOT SPIN COLOMN). 

8. Place spin column in new collection tube. Add 500 µL AW1 Buffer. Centrifuge 1 

minute at 8,000 rpm. Discard /low-through and collection tube. 

9. Place spin column in a new 2 mL collection tube. Add 500 µL AW2 Buffer. 

Centrifuge 3 minutes at 15,000 rpm to dry DNeasy membrane. Discard flow-

through and collection tube. 

10. Place spin column in a clean 1.5 mL tube and pipette 100 µL AE Buffer directly 

onto the DNeasy membrane. Incubate at room temperature for 5 minutes. 

Centrifuge for 1 minute at 8,000 rpm to elute. Keep the liquid. 

11. Repeat step 10. 

12. Discard DNeasy Spin Column and store microcentrifuge tubes in 40 C cooler. 
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Appendix D. The qPCR Reaction System for a single plate (modified from Boyle et al. 

2004). 

 
Composition Volume/µL Final concentration/volume 

Universal master mix (2×) 12.5 1× 

Primers/10 µM 2.25 each primer 10 µM 

MGB Probe/10 µM 0.625 900 nM 

DNA Samples/ddH2O/negative 

controls/positive plasmids 

5 250 nM 

Total volume (per reaction) 25 25 µL 
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Appendix E. Mean (copies/μL), 95% Confidence Intervals (CI), and Coefficient of 

Variation (CV) of positive samples based on triplicate runs. 
 

Sample no. mean(copies/μL) CI (copies/μL) CV (%) 

1 37108.24  [0,85513.61] 30.31  

2 24993.54  [0,51661.64] 24.80  

3 24080.75  [0,50643.84] 25.64  

4 682.38  [436.17,928.59] 8.39  

5 314.21  [0,1010.1] 51.48  

6 184.93  [49.40,320.46] 17.03  

7 115.73  [28.73,202.74] 17.47  

8 82.45  [0,179.92] 27.48  

9 77.18  [35.18,119.17] 12.65  

10 29.06  [6.88,51.24] 17.74  

11 26.17  [0,67.50] 36.71  

12 24.10  [16.94,31.27] 6.91  

13 3.44  [2.46,4.42] 6.61  

14 2.50  [0,5.62] 28.97  

15 2.46  [0,6.02] 33.56  

16 2.14  [0,7.44] 57.51  

17 1.24  [0,3.48] 41.74  

18 0.53  [0,1.1] 24.60  

19 0.51  [0,1.07] 26.11  

20 0.42  [0,0.99] 31.64  

21 0.39  [0,1.37] 57.55  

22 0.08  [0,0.47] 115.36  

23 0.03  [0,0.17] 93.46  

24 0.02  [0,0.09] 95.55  
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