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Abstract of Thesis 

Determination of Kinetic Parameters of Equilibrium Peracetic Acid and Hydrogen 

Peroxide to Calculate Self-Accelerating Decomposition Temperature 

 

Peracetic acid is a simple molecule that works as a powerful oxidant in 

many applications including food safety and water disinfection.  The synthesis of 

the compound is fairly well understood due to its straightforward synthesis by 

mixing acetic acid and hydrogen peroxide. However, the decomposition of the 

compound has not been well studied.  Few sources are available to provide 

kinetic data for the decomposition along with data that shows when the 

compound will undergo a self-accelerated decomposition that could lead to 

disastrous effects. 

This paper demonstrates and discusses an effortless way to determine 

kinetic parameters for the decomposition of peracetic acid in equilibrium with 

hydrogen peroxide using basic first-order kinetics.  Activation energy values were 

found to be approximately 70-90 kJ/mol for the various formulations. The enthalpy 

of decomposition was determined by differential scanning calorimeter (DSC) and 

related to the total active oxygen of the formulation.  Once these parameters 

were established, the self-accelerating decomposition temperature (SADT) was 

determined using the Semenov equation. Final SADT values were determined to 

be about 70°C for 225 kg drums and 60°C for 1500 kg containers.  This work 

applies chemical kinetics to a real world system that is not well understood by its 

users.  
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Chapter 1:  Introduction 

1.1  Peroxygen Compounds 

Inorganic and organic peroxides are tremendously popular in industry and 

laboratories because of their reactivity and oxidative power.  The bonding in this 

group of chemicals is also valuable as it readily cleaves into highly reactive 

radicals.  The unusual weakness of the O-O bond in peroxygen compounds is 

what makes these compounds interesting.  The instability is associated with the 

high enthalpy of decomposition, low activation energy, reaction kinetics and 

structure of the compound.  Another factor takes into account the amount of 

active oxygen (AO) in the formulation [1].  Active oxygen is a term that relates the 

amount of active species in a formulation.  It is a simple ratio of an oxygen atom 

to the molecular weight of the peroxygen compound, MWpo.  Equation 1 shows a 

simplified version of the calculation. 

       
     

    
                                                                                                                        

The first man-made organic peroxide was benzoyl peroxide in 1858 [2].  It also 

became the first commercially available organic peroxide that was used to bleach 

vegetable oils in the early 1900’s.  From that point on, more and more peroxides 

became available commercially for a variety of uses.  Figure 1 displays a list of 

organics that can form organic peroxides.  With the increase of peroxygen 

compound research and synthesis, it was found that some peroxides can 

become extremely dangerous to handle and even auto-oxidize over time [3]. 
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Heat, mechanical shock, friction, shaking or contamination can cause these 

compounds to decompose rapidly or possibly explode [4].  Peracetic acid is one 

of the simplest examples of an organic peroxide. 
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Figure 1: Some organic compounds with structural components that 
are susceptible to forming peroxide in either air or when combined 
with hydrogen peroxide.  This list if for illustrative purposes and is not 
definitive [3]. 
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1.2  Peracetic Acid 

Peracetic acid (PAA), shown in Figure 2, is commonly used as an alternative 

oxidant to chlorine dioxide because it has a stronger reduction potential of 1.81 V 

compared to the chlorine dioxide’s reduction potential of 1.57 V [5].  PAA has 

been applied to disinfection of waste water, poultry carcasses, medical 

equipment and aseptic packaging [6-9].  It can also be used to bleach textiles 

and pulps or for oxidation of chemical species in chemical manufacturing [10, 

11].  There is a growing trend of plants shifting away from chlorine due to its 

environmental impact and some market pressure to lower price.  Because of 

these factors, PAA is becoming more attractive in industry.   In most facilities that 

already use chlorine the process would only require small changes in equipment 

to begin using PAA [12].  This is a huge advantage since it would be difficult for 

most plants to make large changes to an existing process in order to use a new 

disinfectant. 

PAA is commonly synthesized by the reaction of acetic acid with hydrogen 

peroxide, sometimes in the presence of a catalyst.  Other ways of creating the 

compound include the oxidation of acetaldehyde or the reaction of acetic 

anhydride with hydrogen peroxide.  However, the acetic anhydride production 

method can create diacetyl peroxide, which is extremely unstable [13]. The 

reactions of acetic acid or acetic anhydride with hydrogen peroxide proceed to an 

equilibrium mixture of the reactants and products as shown in Eq. (2) and (3).  
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Figure 2:  2-D and 3-D Representation of a PAA molecule. 
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The reaction in Eq. (2) is preferred because it is an easier process to design with 

the monitoring needed to control the reaction.  There are also no side reactions 

that can create dangerous byproducts like diacetyl peroxide. 

With the popularity of PAA increasing due to its ease of production and the 

environmentally friendly byproducts that are created from its decomposition, 

there has been an increasing demand for the material that is difficult to meet 

without the ability to ship and store the compound in large quantities (greater 

than 330 gallons).  This is problematic since most peroxygen compounds are 

inherently thermally unstable.  When PAA decomposition occurs, the reaction 

typically follows the routes shown in the following three reactions (Eq. 4-6): 

                                                                                              

                                                                                              

                             

          
         
                                                                                

When PAA decomposes, pressure will build in a container since oxygen is being 

generated in most of the above equations.  Therefore, appropriate engineering of 

containers is essential for PAA storage. Containers must be built with pressure 

relief to prevent pressure build-up caused by accumulating oxygen gas.  Safe 

containment can turn into a serious problem if a pressure relief device is 
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defective, blocked or if decomposition is so severe that it overwhelms the 

capacity of safety devices.   

 The equilibrium of PAA is complex and makes hydrolysis difficult to track.  

The decomposition is driven by the hydrolysis of PAA since it is the least stable 

of the components.  Since this decomposition leads to the formation of the 

reactants, PAA can be continually reformed.  At room temperature, hydrogen 

peroxide is very stable, so the lowering of the assay of PAA and hydrogen 

peroxide is related to spontaneous decomposition of PAA.  The hydrogen 

peroxide assay decreases over time because of the reformation of PAA due to 

the increase in acetic acid from the decomposition reactions. Due to this 

equilibrium shift to the left, PAA needs to be formed to maintain the equilibrium. 

 At ambient temperatures, hydrolysis and spontaneous decomposition 

generally occur slowly, with hydrolysis being more important than spontaneous 

decomposition [12].  The metal ion catalyzed decomposition will be significantly 

faster at lower temperatures than hydrolysis [14].  Metal ion concentrations as 

low as 10-20 ppm can initiate the reaction, and the typical metal ions of concern 

are iron, cobalt, manganese and copper in the divalent oxidation state.  These 

ions can initiate what is called Fenton’s reaction.  These conditions allow the 

metal ion to transition from both a high and low valency because the peroxide 

can act as an oxidizer and reducer [15].  An example of a Fenton’s reaction 

scenario would involve contamination with iron.  The reactions below show how 

iron becomes oxidized and reduced due to the production of different radicals of 

hydrogen peroxide [16]. 
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Several methods have been employed that help minimize the impact of metal 

impurities.  These methods include passivating metal containers [17], using 

sequestering agents [18], or adding inorganic salts [19].   

Another safety concern around PAA would be a self-heating event.  This 

situation occurs when the external temperature is high enough to heat the 

product to a critical temperature.  The heat generated from the solution cannot be 

dissipated into the environment as quickly as it is produced [20].  This critical 

temperature is called the self accelerating decomposition temperature (SADT) 

and is a main concern for transportation and storage since most trucks and 

warehouses are not refrigerated.  It is easier to prevent metal contamination, 

which can lower the SADT value, than it is to keep significant amounts of PAA 

refrigerated at a low temperature.  Most of the focus of new PAA formulations is 

to increase this SADT value.   

1.3  Calculation of SADT 

One of the first mathematical representations of the critical conditions relating 

the size and shape of the reacting material to its decomposition kinetics was 

made by Nikolai Semenov in 1928. This equation was derived from the 
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application of Newton’s Law of Cooling, which shows a linear dependence of the 

cooling rate with excess temperature.   

The rate of heat production of the mixture will occur uniformly throughout the 

mixture to a temperature that is greater than its surroundings.  This equation will 

take into account the enthalpy of decomposition, ΔH, along with Arrhenius kinetic 

parameters: activation energy, Ea, and pre-exponential factor, A. This equation is 

given as: 

        
  

  
   

 
                                                                                                                              

This is assuming that the temperature of the fluid, Tf,  is in the early stages of its 

self-heating and the heat generation is related to the whole volume, V. The next 

part of the equation takes into account the previously stated Newton’s Law of 

Cooling.   

                                                                                                                                          

The cooling of the system is the heat transferred from the whole fluid surface in 

contact with the atmosphere, S, across the container wall and into the 

surrounding atmosphere.  The heat transfer coefficient, (h), of the container wall 

is dependent on the material that it is constructed of.  Some examples are metal, 

plastic and glass.  The values for each material based on its thickness can be 

easily found in tables.   

The critical temperature is determined by setting Eq. (11) and (12) equal to 

one another along with the first derivative over temperature.  These two lines will 

create a curve and a tangent line that will cross the x-axis that will define the 

SADT temperature.  This is a point where the heat generation of the system is 
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equal to the loss to the outside. Figure 3 shows a graphical representation of how 

these lines tangent.  This steady state is difficult to reach experimentally for a few 

reasons.  For example, the heat generation of the system is exponential while the 

heat loss is linear.  This shows that under normal circumstances heat will be 

accumulating in the system faster than it can be removed after a certain point in 

time depending on the stored chemical energy of the compound.  Another issue 

that is not taken into account is the consumption of the reactant over the course 

of the decomposition.  This loss of active oxygen will cause the temperature 

increase to slow since the reaction rate will decrease as reactant is consumed 

[21].   

There are situations where the heat loss curve can shift leading to curves that 

have multiple points of intersection or no intersection at all.   Figure 4 shows 

graphically how this system would be like in the real world.  When the ambient 

temperature is low, the system is in a stable state where the cooling would out-

pace the heat generation of the container.  If that ambient temperature were to 

be increased, it would be more difficult for the system to displace heat that is 

accumulating and could result in an over-heating leading to ignition.  Figure 5 

shows how reducing the heat loss could result in the two curves not intersecting 

which would result in a scenario where ignition would always occur.  This would 

happen if the packaging material became insulated or otherwise changed in a 

way that prevented proper heat loss out of the system.  This would lead to 

adiabatic conditions within the system. 
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Figure 3: Simplistic graphical representation of the Semenov 
equation.  This image shows that heat generation curve (A) 
meeting a tangential line (B) at a single point represented as the 
critical temperature.  When the tangent intersects the x-axis at point 
(C), this represents the actual SADT of the system.  Point (D) 
represents the value that is rounded up to the nearest 5°C and 
reported. 
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low enough to create a region that can keep the system stable.  If the ambient 
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reduced leading to adiabatic conditions within the container. This shows that 
all situations lead to ignition because the heat generation is always greater 
than the heat loss. 
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Setting Eq. (11) and (12) to be equal to one another and rearranging the 

terms an equation that allows for the calculation of the SADT can be obtained 

using Eq. (13).  Since the SADT value is used on both sides of the equation, it 

needs to be solved using an iterative approach.  Iteration involves recalculating a 

result based on an initial guess and finally converging on a final result based on a 

certain termination criteria.  In this case, the termination criterion is when both 

sides of the equation are equal. 

        
    

   
 

 

  
  

   
   

      
 
                                                                                           

1.4  Derivation of the SADT Equation 

The derivation of the workable Semenov equation is quite complicated and 

requires the ability to make some approximations, within reason [22].  Initially, it 

is necessary to relate q1 and q2 at the point of tangency where the fluid 

temperature is equal to the critical temperature.  This will relate Tf  with the 

temperature at which the heat loss and heat generation curve intersect at T1.  In 

addition, the atmospheric temperature, Ta, will be converted to the critical 

temperature, Tc,  at which the heat generation of the system begins to run away. 

     
 
   
   

 
                                                                                                                      

Next, setting the conditions of the derivatives with respect to temperature of 

dq1/dT and dq2/dT equal to one another. 
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Substituting Eq. (14) into Eq. (15) provides a quadratic with respect to T1 

   
 

 
                                                                                                                                    

Solving the quadratic for T1 yields 

    
        

 
   

 
 
 

                                                                                                                   

A rough approximation with 4RTc /E is then taken using a Tc of 350 K and an E of 

40 kcal/mole, which are fairly representative values of sensitive compounds.  

This results in a value of about 0.07 meaning that the term should not be 

approximated as 1.  We will move to determine the positive root of Eq. (17). 

    
 

  
       

 

 
   

 
 
    

 

  
    

 

 
     

 

 
                                                   

Using the same approximations from Eq. (17), a value for T1 is given as 20,000 K 

which is unrealistic making this root not a good option to use.  The next step 

would then move to the negative sign of Eq. (17). 

    
 

  
       

 

 
 

 
 
    

 

  
  

 

 
                                                                              

Eq. (19) shows how the relation of the T1 is related to the critical temperature of 

the system.  If we expand the square root from Eq. (17) as a series, we obtain 
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Eq. (20) will then reduce down to  

       
   

 

 
                                                                                                                                  

The pre-explosion rise will relate to ΔTc to be expressed as 

            
   

 

 
                                                                                                                    

Divide both sides of Eq. (22) by Tc to get 

   
  

  
  

  
    

   
 

                                                                                                                       

In this case, ΔTc / Tc is far less than unity since we show in Eq. (19) that T1 is 

relatively equal to Tc.  For Eq. (23) to make sense, the term ΔTc /Tc generally is 

valued at 0.01 to 0.02.  We then can rearrange Eq. (22) as follows 

 

  
  

 

      
 

 

     
   
  

 
                                                                                                     

As stated earlier, since ΔTc/ Tc is far less than unity, Eq. (16) can be changed to 

reflect that 

 

  
 

 

  
   

   
  

                                                                                                                             

With all this information, we can substitute Eq. (22), (23) and (25) into Eq. (14) to 

remove T1  to obtain 
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In this case, Tc is the SADT temperature of the system.  Multiplying both sides of 

Eq. (26) by Tc
2 will result in Eq. (13) [22]. 

1.5  Current Methodologies to Determine SADT 

According to the Recommendations on the Transportation of Dangerous 

Goods, there are a few acceptable methods to determine SADT that fall under 

section 28, test series H [23].  Each test follows the same general test guidelines 

for storing the chemical at a preset external temperature and observing for any 

chemical reaction or heat generation at near adiabatic conditions.  These are all 

based off the Semenov explosion model calculation.  The rate of heat generation 

within the product is measured and plotted against the isothermal temperature at 

which the test was conducted for the determination of the SADT value.  There 

are some differences for each test that allow flexibility for the testing of large 

quantities of sample or different types of compounds.  These compounds include 

solids, liquids, pastes and dispersions.  

 One of the ways of conducting the test is with an adiabatic test chamber that 

is well insulated, has the ability to maintain air temperature +/- 2°C and is big 

enough to maintain at least a 100 mm distance from the package and the wall of 

the chamber.  Figure 6 shows a schematic of an adiabatic chamber for a small 

package up to 25L.  The benefit of this system is the test only needs to be run 

once to get an accurate SADT value.  Once exothermic activity is detected by the 



18 
 

instrument, this self-heating is tracked until this activity ceases.  This could 

extend on for several days.  Once the peak value is determined, the test is 

terminated and the self-heating rate along with the power output at various 

temperatures is determined.  These values are used to generate a heat 

generation curve that can be used to determine the SADT values.  An example of 

the heat generation profile is shown in Figure 7.   

The linear equation derived from this heat generation profile helps to 

determine the SADT value by providing the heat generation at any given 

temperature.  Since the heat loss curve is known, the tangential point can be 

determined and the SADT value is determined.  Kinetic parameters can be 

obtained from the linear equation.  Initially, it starts out with Eq. (27), 

                                                                                                                                 

This equation using the axis as a guide can be rewritten as follows, 

        
      

 
                                                                                                             

Next, we want to remove the natural log to put the equation into the classic form 

of the Arrhenius equation, 

      
 
      

 
        

                                                                                                                  

Finally, removing the constant from the exponent and bringing it out front, 
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This equation provides a value of 6.68x1019 K/s and the activation energy is 131 

kJ/mol. 

An issue with this method is the possibility of a large explosion with extremely 

thermal sensitive compounds. This can be overcome with sufficient safety 

protocols that include a cooling system along with the selection of an appropriate 

testing site with sufficient space in the event of an explosion. 

  



20 
 

 

 

  

Figure 6: Diagram of SADT test apparatus for containers up to 25L.  Image 
from UN Transport of Dangerous Goods [23]. 
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Figure 7: Heat generation profile of an equilibrium PAA sample.  Kinetic 
parameters can be obtained from this starting with Eq. (26).  The 
parameters are then applied to the Semenov equation. 
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Another method that is used is an isothermal test system that uses very 

small sample sizes in the range of a few milligrams up to several grams.  This 

eliminates the chance of extreme thermal hazards.  This test scheme, shown in 

Figure 8, uses a dual channel setup; one to record a sample signal and the other 

that is measuring the blank signal for comparison.  This method is more labor 

intensive since the test should be run for 36 hours and replicated at least 7 times 

to get results that can vary in heat generation from 15 to 1500 mW/kg.  This is 

necessary because these results are then plotted as temperature vs. 

temperature rise rate.  Figure 9 shows the curve that is developed using this type 

of isothermal technique.  This curve only used 3 data points to extrapolate the 

necessary data to determine the final SADT.  The regression curve data found in 

the figure represents the pre-exponential factor and the activation energy data 

that is needed to plug into the Semenov equation.  The pre-exponential factor in 

this case is 8.4 x 1012 °C/min and the exponent is the activation energy divided by 

the gas constant.  For this case, the activation is found to be 98,360 J/mol.  This 

method may also be a little more prone to error since separate samples need to 

be run each time, which increases the risk of a sample being exposed to outside 

contaminants and may skew the SADT value. 
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Figure 8: Diagram for Isothermal Storage Test.  Image from the Transport 
of Dangerous Goods [20]. 
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Figure 9: Graphical representation of Thermal Activity Monitor 
data from outside lab.  Kinetic parameters can be derived from the 
linear equation that is then applied to the Semenov equation. 
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1.6  Determination of Critical Parameters for SADT Calculation 

The idea of activation energy was introduced by Svante Arrhenius in 1889 

[24].  The activation energy of the reaction is the minimum energy required for a 

reaction to occur.  This amount of energy can be varied with the addition of a 

catalyst or stabilizer in the case of this experiment.  Temperature variation is the 

important factor when it comes to self-accelerating decomposition.  In this case, 

peracetic acid is stable at room temperature but when the temperature is 

increased, the possibility of decomposition is increased.  The activation energy is 

determined experimentally along with the pre-exponential factor from a simple 

linear equation.  Table 1 shows some typical activation energy values for a 

variety of organic peroxides.   

The pre-exponential factor, A, is dependent on how often the molecules 

collide to produce a reaction.  This value can be calculated rather than defined 

experimentally as the collision frequency factor, designated by a Z, but can differ 

from experimental values by factors of 10 [25].  Only collisions that have 

sufficient energy greater than the activation energy will cause a reaction to 

proceed, but they also have to collide in the proper orientation. This orientation 

factor is why the calculated value, Z, is sometimes much different than the 

experimental value, A.    

 

 



26 
 

 

Table 1:  Example Enthalpies of Decomposition and Energy of Activation for 
Various Organic Peroxides. 
 

O
rg

an
ic

 P
e

ro
xi

d
e

St
ru

ct
u

re
Δ

H
, J

/g
Ea

, k
J/

m
o

l
Δ

H
, J

/g
Ea

, k
J/

m
o

l
Δ

H
, J

/g
Ea

, k
J/

m
o

l
Δ

H
, J

/g
Ea

, k
J/

m
o

l

B
e

n
zo

yl
 p

e
ro

xi
d

e
C

14
H

10
O

4
18

34
14

5
10

00
18

8

t-
B

u
ty

l h
yd

ro
p

e
ro

xi
d

e
C

4H
10

O
2

10
55

13
9

31
04

11
4

16
00

C
u

m
e

n
e

 h
yd

ro
p

e
ro

xi
d

e
C

9H
12

O
2

18
76

17
6

35
68

13
2

15
00

D
il

au
ro

yl
 p

e
ro

xi
d

e
C

24
H

46
O

4
97

1
13

5
58

8 
[3

1]
10

0 
[3

1]
57

6

D
i-

te
rt

-b
u

ty
l p

e
ro

xi
d

e
C

8H
18

O
2

55
7

16
1

20
20

11
1

12
11

12
5

12
00

80

M
e

th
yl

e
th

yl
ke

to
n

e
 p

e
ro

xi
d

e
C

8H
18

O
6

14
44

14
1

12
00

11
0

D
ia

m
yl

 p
e

ro
xi

d
e

C
10

H
22

O
2

92
5

14
6

D
ic

u
m

yl
 p

e
ro

xi
d

e
 

C
18

H
22

O
2

81
1

13
0

70
0

t-
b

u
ty

l c
u

m
yl

 p
e

ro
xi

d
e

C
13

H
20

O
2

99
1

13
6

H
yd

ro
ge

n
 p

e
ro

xi
d

e
 [2

9]
H

2O
2

96
3

33
6

R
e

fe
re

n
ce

[2
6]

[2
7]

[2
8]

[3
0]



27 
 

1.7  Kinetic Theory of Chemical Reactions 

There are two theories that deal with reactions in the liquid phase: Collision 

and Transition State. These reactions are fundamentally the same in the liquid 

phase as in the gas phase.  However, in solution the interaction of the solvent 

and the reactants must be taken into account because the changing 

configurations of the reactants will be influenced by the solvent.  The properties 

of permittivity, viscosity and the polarizability of the solvent will play an important 

role in these reactions. 

The collision theory is the most basic theory and comes down to collision 

between the reactant molecules with sufficient energy to cause a reaction.  

Arrhenius explained that molecules must have sufficient kinetic energy to 

overcome repulsive and bonding forces of the reactants to create products; this 

is known as the activation energy, Ea.    Depending on the amount of energy 

required, atoms or molecules may collide and simply bounce off one another 

[32].  Another important detail about collision theory is that the energy that is 

associated with the reactant atoms or molecules mutual approach is the only 

energy used to calculate the collision energy.  The molecules may also have 

velocity and momentum in a different direction but that is not accounted for when 

looking at the energy required to overcome the activation barrier.   

The main theory that is utilized in this study is the transition state theory.  This 

is heavily relied upon when it comes to reactions in solutions. Since it is difficult 

to take into account the charge on the reactants, relative permittivity and change 

in the solvation pattern, the thermodynamic formulation is used [33].  Collision 
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theory notes that not all reactions will create products. The transition state theory 

tells us that there are two possible outcomes from a collision:  either they will 

return to reactants or the molecules will rearrange and create products [34].  

When we return to the idea of reactions in solutions, we need to take into 

account the concept of ideal and non-ideal.  The terms are somewhat self-

explanatory since ideal solutions behave in a way that is easy to predict and 

follows theory.  Solution based reactions are mainly considered non-ideal.  When 

the solute concentration rises, the solute-solute interaction becomes particularly 

important, especially if particles or molecular charges are involved.   

It was postulated in a paper by Zhao et al. [13], that a molecule of PAA has 

an activated carbonyl that gets attacked by the oxygen in the hydroxyl group of 

another PAA molecule creating an active intermediary proposed in Figure 10.  

This intermediary then quickly decomposes into two acetic acid molecules and 

oxygen.  This compound is formed because there is sufficient energy in the 

system to create this activated complex. 

The experiments that are discussed in this paper are done in solutions that 

have the same general solvent concentration, permittivity and viscosity.  Because 

these factors remain constant throughout the study, the Arrhenius equation can 

be used and non-ideality does not have to be considered since it is expected to 

be constant. 
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Figure 10: Proposed mechanism of an active intermediary formed with a 
positively charged carbonyl.  This gets attacked by an oxygen atom in the 
hydroxyl group of another PAA molecule.  This rapidly decomposes to 
acetic acid and a molecule of oxygen. 



30 
 

1.8  Overview of Auto-Titrator 

Titrations are one of the most widely used techniques in chemical analysis 

with very high accuracy and precision.  This technique also allows a high degree 

of automation due to the types of endpoint detection.  The indication methods 

that are available are: pH, potentiometric, voltametric, ampometric, photometric, 

conductivity and thermometric.  The titrator used, shown in Figure 11, used 

potentiometric and pH titrations to conduct the experiments mentioned 

throughout. 

1.9  Overview of Differential Scanning Calorimeter 

A differential scanning calorimeter (DSC), shown in Figure 12, is an 

instrument that measures the differences in heat flows between a sample and a 

reference material/sample relative to temperature or time.  The reference sample 

is typically an empty crucible that is placed on the heating element alongside the 

sample being tested in the same compartment.  The differences in heat flow 

arise from a phase change in the sample.  These changes can be due to melting, 

crystallization, chemical reactions, vaporization or other physical changes [35].  

The added benefit of this instrument is that it allows a milligram scale sized 

sample to be heated at varying temperature rates.  This allows samples to be 

tested quickly.  These small sample sizes allow the decomposition onset and 

enthalpy to be determined with no risk of explosion [36].  The sample size does 

pose a problem since it is important to obtain a sample that is representative of 

the bulk solution and measurement errors can add to the variability of the results.  
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There is also a need for a balance that will accurately measure the small 

quantities required [37]. 
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Figure 11: Image of the auto-titrator used in this experiment 
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Figure 12: Image of a Mettler-Toledo DSC1. 
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1.10 Other Critical Factors 

The surface area and volume calculations are based on typical calculations 

for regular shapes of cubes and cylinders.  These calculations are important in 

the final calculation for the SADT because they play a role in the heat transfer to 

the surrounding environment.  The more surface area that is available will allow 

more of the chemical to have access to the package wall to give off heat.  Also, 

not all surfaces on a container will have the opportunity to contribute to the heat 

dissipation.  For example, a cubic tote that is placed on the floor will not be able 

to displace heat out the bottom as efficiently as the sides.  This leads to an 

uneven heat dissipation.  For the sake of this study, a conservative surface area 

will be used by calculating the surface area of a sphere with the same volume.  

There is a delicate balance to maintain in order to achieve a good equilibrium.  

Even if the container has a large wall surface, the distance from the middle of the 

container to the wall of the container cannot be too large.  Center-to-wall distance 

is equally important for the heat dissipation.   

 The heat transfer coefficient,    depends on the type of material that the 

chemical is packaged in and the driving force for the flow of heat.  The main 

types of packaging that would be of use in this case are glass, metal and plastic.  

Each material will have its own value and will vary based on thickness.  The 

simplest form of the heat transfer coefficient is defined as: 

   
 

 
                                                                                                                                                  

where k is the thermal conductivity of the container material and x is the wall 

thickness.  In the case of SADT values, we have to assume that there is no 
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forced cooling along the surface of the container and that there is no flow inside 

the container other than naturally occurring convection as the solution heats.  

When the heat transfer coefficient and surface are combined, this implies an 

effective heat transfer over the surface of the container. 

The heat transfer coefficient will be looked up in reference material rather 

than experimentally determined in this test.  This value is not large enough to 

cause significant changes in the final calculation so general values for most types 

of material can be used.  This coefficient will also take into account the surface 

area of the package that is able to dissipate heat.  Generally, all sides of a 

container are able to remove heat but it is important to look at real scenarios.  In 

reality, the top and bottom of the container may not remove as much heat as the 

sides due to storage conditions leaving the sides to remove most of the heat.  

These factors will be taken into account to determine a conservative estimate of 

the heat transfer. 

1.11 Objectives of the Thesis Project 

The purpose of the project is to use the Semenov equation to predict the 

SADT of an aqueous peracetic acid and hydrogen peroxide mixture existing in 

equilibrium.  It is important that this method calculates values comparable to 

outside labs so it can be used as a tool to determine the value of new 

formulations.  The first challenge will be to test samples by titration to determine 

the change in peracetic acid and hydrogen peroxide concentration over time at 

various temperatures. The overall change in active oxygen will be calculated and 

will be plotted using the first-order rate expression so each temperature can 
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provide its own rate.  Secondly, each different decomposition rate will be plotted 

using the Arrhenius equation.  The activation energy and the pre-exponential 

factor can be extrapolated from the linear equation.   
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Chapter 2:  Experimental Parameters 

2.1  Materials 

 Samples were prepared using deionized water with a resistivity of at least 18 

megohm·cm using an Aries High Purity Water System (Model ARS-102).  Glacial 

acetic acid (> 99.7%, Eastman Chemical), hydrogen peroxide (> 50%, 

PeroxyChem), etidronic acid (> 60%, Riverside Chemical), dipicolinic acid 

(>98%, Sigma-Aldrich), sodium hydroxide (0.25 N, Ricca Chemical), ceric sulfate 

(0.25 N, GFS Chemical), potassium hydrogen phthalate (>99.9%, NIST), arsenic 

trioxide (>99.9%, Alfa Aesar), and osmium trioxide (>99, Alfa Aesar) were all 

gathered from production or purchased and used as received.  No other 

purification was deemed necessary since impurities in the chemicals were 

negligible per the certificate of analysis for the purposes of this experiment. 

2.2 Synthesis and Control of Peracetic Acid Samples 

 Samples were prepared in the lab following a batch method of mixing the 

components in the appropriate ratios leading to specific equilibrium 

concentrations of peracetic acid and hydrogen peroxide.  These samples were 

carefully made to prevent contamination from metals or any other materials that 

may lead to the decomposition of the formulation.  Sample containers were made 

of glass and containers were passivated before use.  The passivation technique 

used in this experiment was to soak the glassware in 10% nitric acid overnight 

then rinse and dry.  Typically, the samples were made in triplicate with a volume 

of 50 mL.  Depending on the designation, samples were either kept inside a 
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chemical cabinet for room temperature assay tracking or inside incubators for 

high temperature tracking.  The incubators were held at temperatures ranging 

from 35-60°C and the incubators were periodically checked to verify the 

temperature.  The samples were assayed periodically and the length of time that 

they were tracked was dependent on the temperature.  Room temperature 

samples were tested for up to a year and the higher temperature samples were 

tracked up to 6 weeks.   

2.3 Auto-titrator Instrument 

Sample analysis was performed using a Metrohm autotitrator with Tiamo 

software version 1.2.1.  The peracetic acid titration is done by 3-point pH 

detection equipped with an 854 iConnect probe (model 6.0278.300).  The titration 

uses equivalence points, which are similar to an inflection point in an acid-base 

titration.  This point is where the reagent and the analyte are in equal 

concentrations.  The volume of reagent that was required to reach this point is 

used in the final calculation to determine the concentration of the equilibrium 

mixture of acetic acid and peracetic acid.  These analytes in solution can be 

distinguished from one another because of the difference in pKa values.  The 

pKa values for acetic acid and peracetic acid are 4.76 and 8.20, respectively. 

Figure 13 shows a typical determination curve for the titration of PAA.  The 

midpoint between endpoint 1 and 2 is the pKa of acetic acid and the midpoint of 

2 and 3 is approximately the pKa of peracetic acid.  The initial end point is from 

stabilizer that is found in the sample.  The titration only takes a few minutes from 
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start to finish so a shift in the equilibrium between the various components in not 

a concern. 

The auto-titrator then needs to be converted to assay the hydrogen peroxide 

concentration.  This method uses a potentiometric endpoint using an 854 

iConnect probe (model 6.0451.300).  The hydrogen peroxide is titrated with ceric 

sulfate until an endpoint is detected as shown in Figure 14. 

Due to the nature of a PAA equilibrium mixture, no standard exists to 

calibrate, standardize or check the performance of the instrument.   
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Figure 13:  Example of a PAA analysis curve of a sample that consists 
of equivalent amounts of peracetic acid and acetic acid in this case.  
Sample titrations only proceed for a few minutes which does not cause 
significant changes to the equilibrium.  This allows for an accurate result 
for the PAA and acetic acid concentrations. 
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Figure 14:  Example of a potentiometric titration of hydrogen 
peroxide with ceric sulfate. 
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2.4 Titrant Standardization 

The titrants used to titrate the PAA and hydrogen peroxide are checked with 

established methods primarily found in the American Society for Testing and 

Materials (ASTM International) [38].  Typical manual methods use an end point 

indicator.  Since the standardization is done by autotitrator, there is no need for 

an indicator.  The absence of an indicator does not affect results, as it is used 

only for visual representation of the end point when testing manually. 

Sodium hydroxide is checked using potassium hydrogen phthalate traced to 

the NIST standard reference material.  The standardization is done in a series of 

5 samples with approximately 1.0 g of the phthalate standard.  This standard is 

diluted with 100 mL of high purity water and tested on the autotitrator.  The 

average of the 5 samples is used as the normality of the sodium hydroxide and 

the instrumentation is adjusted accordingly. 

The ceric sulfate standardization is a little more complex due to the 

hazardous nature of the compounds used for the test.  The standardization is 

also done in a series of 5 samples using about 0.2 g of arsenic trioxide.  Arsenic 

trioxide is then dissolved in 20 mL of 10% sodium hydroxide.  When solution is 

complete, 50 mL of DI water is added along with 10 mL of 25% sulfuric acid and 

3 drops of osmium tetroxide.  When the titrations are completed, the average of 

the 5 samples is used for the normality value.   
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2.5 Differential Scanning Calorimeter (DSC) 

The DSC 1 from Mettler-Toledo is calibrated by a pure metal that has a 

known melting point and enthalpy.  This instrument uses indium as the calibration 

metal which has a melting point at 156.60°C with an allowable value of 156.30-

156.90°C.  The normalized enthalpy of the melt should be between 27.85 J/g and 

29.05 J/g.  The instrument should be checked with the calibration metal often due 

to the volatile nature of the chemicals used.  If a value falls outside the melting 

point or enthalpy range, the instrument needs to be calibrated.   

The instrument adjustment is rather simple and can be done by conducting at 

least 5 indium checks.  A small pill of indium is placed into a 40 μL aluminum 

crucible and pressed to the bottom for good contact.  The crucible is then 

hermetically sealed to be placed into the DSC furnace.  The DSC indium check 

method is used to check the calibration and to adjust the instrument.  This 

method tests the temperature range from 120°C to 180°C at a scanning rate of 

10°C/min.  The melting temperature and the normalized enthalpy is averaged 

and input into a calibration screen.  Once the values are adjusted, another check 

should be done.  The instrument should now be within specifications.  An 

example is an indium trace is shown in Figure 15. 

Once the temperature and enthalpy was calibrated, the enthalpy values of 

PAA decomposition were tested using temperature rates of 3, 5 and 10°C over a 

temperature range of 30-150°C.  The rates were varied because scanning rate 

can change the maximum temperature of the exotherm and to see how the 
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formulation behaved under various heating rates.  This maximum temperature 

can be used as an alternate way to determine the activation energy.   
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Figure 15: Typical DSC trace for indium calibration.  This is tested with a 
pre-programmed method that is provided into the instrument. 
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Chapter 3:  Results 

3.1 Determination of Decomposition Kinetics for the Various Formulations 

 The starting point to determine parameters like activation energy and pre-

exponential factor is to determine the decomposition kinetics of a formulation.  

Several formulations were tracked over time and the degradation of the PAA and 

hydrogen peroxide are plotted.  A typical chart that is created is shown in Figures 

16 and 17.  The assays of the samples are tested periodically over an extended 

period of time.  The time they are tracked is usually dependent on the 

temperature that the samples are being stored in.   

Since the Arrhenius equation is dependent on temperature, one must use 

at least 3 different temperatures to extrapolate the activation energy and pre-

exponential factor.  It is important to get as many data points as possible to get a 

proper correlation and confirm the plot is linear.  Once enough data is collected, 

the formulation is converted to total active oxygen for the PAA and hydrogen 

peroxide by calculation.  This data is used to determine the decomposition rates 

as shown in Figure 18 by plotting the natural log of the normalized active oxygen 

concentration versus time.  Table 2 shows all the rates that were determined at 

various temperatures with all the formulations. 
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Figure 16:  Example of the reduction in PAA assay over time at 
various temperatures.  This degradation shows first order kinetics. 
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R² = 0.9823 R² = 0.9961 R² = 0.9726 
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Figure 17: Example of the reduction of hydrogen peroxide over time at various 
temperatures.  Again, decomposition appears to be first-order. 
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Figure 18:  Chart used to determine the decomposition rate of the total active 
oxygen at various temperatures.  The slope translates to the negative rate of 
decomposition. 
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Table 2:  Average rate for each formulation at various temperatures with respect to 

active oxygen loss.  Samples were tested in triplicate so that the standard deviations 

could be calculated.  Formulation 4A and 5A was only tested as a single sample at 

room temperature.  These values were later used to determine the kinetic parameters.   
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3.2 Determination of Activation Energy and Pre-exponential factor 

Once the rates were determined and found to be simple first-order, plots 

were derived using the natural log of the decomposition rate versus the 

reciprocal temperature.  The slope of the curve provides the activation energy 

divided by the gas constant while the y-intercept is the natural log of the pre-

exponential factor.  A typical plot is shown in Figure 19.  Table 3 shows all the 

calculated activation energies and pre-exponential factors that were found using 

this method. 
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Formulation Ea, 
kJ/mol A, days-1

1A 66.6 4.61E+07

1B 108 3.46E+14

1C 80.8 1.67E+10

1D 122 7.31E+16

1E 76.0 1.89E+09

1F 80.9 1.73E+10

2A 80.1 2.77E+10

3A 94.8 4.45E+12

3B 84.4 1.23E+11

3C 105 6.57E+14

4A 81.2 3.89E+11

5A 75.3 1.09E+10

Table 3:  Calculated values for activation 
energy and pre-exponential factors for the 
various formulations based off of the 
Arrhenius equation. 
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3.3 Enthalpy of Decomposition of PAA Solutions 

Several different PAA formulations were tested on the DSC to determine 

the energy given off by the decomposition of PAA.  Table 4 shows the different 

enthalpy values that were determined.   Small variations in the experiments were 

used to capture the full range of the enthalpy along with changes in the heating 

rates to monitor any changes in the maximum temperature that was reached.  

Table 5 shows a comparison of formulations between an outside lab and the 

testing done in this experiment.   

When the decomposition enthalpy of the formulations were plotted versus 

the active oxygen content there is a somewhat linear correlation.  This presents 

the possibility that the decomposition energy could be extrapolated based on the 

active oxygen content of the formulation.  The plot in Figure 20 shows this 

correlation.   
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Sample Rep. AO, % ΔH, J/g (J/g)/AO,% Avg. ΔH Std. Dev. ΔH %RSD

15564-8 1 14.45 1170 81.0

15564-8 2 14.45 971 67.2

15564-8 3 14.45 1214 84.0

15564-8 4 14.32 1200 83.8

15564-8 5 14.32 1220 85.2

Batch 2 1 7.25 781 108

Batch 2 2 7.25 763 105

Batch 2 3 7.25 695 96

Batch 2 4 7.25 780 108

15567-1 1 14.22 1510 106.2

15567-1 2 14.22 1240 87.2

15567-1 3 14.22 1350 94.9

15567-1 4 14.22 1290 90.7

15567-1 5 14.22 1330 93.5

2004270 1 8.20 785 95.7

2004270 2 8.20 656 80.0

2004270 3 8.20 661 80.6

2004270 4 8.20 717 87.4

2004270 5 8.20 735 89.6

2004940 1 10.30 783 76.0

2004940 2 10.30 797 77.4

2004940 3 10.30 817 79.3

2004940 4 10.30 793 77.0

15564-4 1 14.53 1380 95.0

15564-4 2 14.53 1300 89.5

15564-4 3 14.53 1370 94.3

2002955A 1 8.34 673 80.7

2002955A 2 8.34 651 78.1

2002955A 3 8.34 649 77.8

2004458 1 11.47 1030 89.8

2004458 2 11.47 1020 88.9

2004458 3 11.47 1030 89.8

5.39

9.05

0.56

2.02

3.23

1.79

7.58

7.61

658

1030

105.0

40.7

102.0

53.9

14.3

43.6

13.3

5.8

1160

755

1340

711

798

1350

Table 4: Enthalpy values of various PAA formulations along with some 
simple statistics.  These values show some dependence on the active 
oxygen of the formulation. 



56 
 

 

  

Table 5:  Comparison of enthalpy values that were determined within this 
experiment and an outside lab for verification. 

 

Experimental Results External Testing 

ΔH, J/g σ %RSD ΔH, J/g σ %RSD 

Formulation 

1 
1240 111 8.9 1180 208 17.7 

Formulation 

2 
610 48.7 8.0 944 NA NA 
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Figure 20:  Analysis of the energy of decomposition versus the total active 
oxygen of various formulations.  There is a linear trend with some unexplained 
variation. 
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3.4 Self Accelerating Decomposition Temperatures (SADT) 

 Using all the previous calculations, the SADT can be calculated for various 

formulations in several different packages and sizes.  Table 6 shows the various 

SADT values that were calculated by this method along with comparison values 

from outside labs in Table 7.  Another calculation was done on the SADT values 

to see how various parameters affect the final value.  This was done by varying 

the activation energy, pre-exponential factor and exothermicity by +/- 10%.  

Results are shown in Table 8. 
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Table 6:   SADT Values for Formulations Tested in Various Packages. 

 

225 kg 1500 kg 25000 kg

Formulation Drum, °C Tote, °C Bulk, °C

1A 94.9 82.3 80.2

1B 66.5 60.1 59.0

1C 74.3 65.2 63.6

1D 61.8 56.3 55.3

1E 82.5 72.3 70.6

1F 74.2 65.1 63.6

2A 73.9 64.7 63.1

3A 71.1 63.5 62.2

3B 71.7 63.1 61.6

3C 55.2 49.0 47.9

4A 42.2 34.8 33.5

5A 59.6 50.6 49.1



60 
 

Table 7: Comparison of SADT values that were calculated using the method 
described in this paper along with values that were calculated by outside labs 
using UN/DOT approved methods. 
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Formulation 1500 kg ΔEa, +10% ΔEa, -10% ΔA, +10% ΔA, -10% ΔH, +10% ΔH, -10%

1A 82.3 119.7 45.1 80.7 84.2 80.7 84.2

2A 64.7 99.8 29.7 63.5 66.1 63.5 66.0

3A 63.5 98.3 28.8 62.5 64.6 62.5 64.6

Table 8: Variation of calculated parameters +/- 10% to show the effects of minor errors in 
determining these values. These calculations are based on a 1500 kg SADT value.  
Temperatures presented are in °C. 
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Chapter 4: Discussion 

4.1 Decomposition Kinetics to Determine Activation Energy and Pre-exponential 

Factor 

 The kinetics parameters of the reaction are fairly straight-forward and easy to 

calculate due to the first-order decomposition observed. Referring back to Table 2, we 

show the various decomposition rates that were calculated from the data.  The rates 

trended as expected with the fastest rate of decomposition at the highest temperature.  

None of the data deviated from first-order kinetics although there were some data points 

that showed some sizeable variation.  This is expected since titrations do not have a 

significantly high degree of accuracy regardless of automation.  Weighing errors, errors 

in titrant standardization and misinterpretation of endpoints for the concentration 

calculations can contribute to variation.  This was resolved by testing the samples in 

triplicate and averaging the values to reduce the total variation.   

 The rates for each formulation were on the same relative scale at each 

temperature tested.  A commonly stated rule of thumb is that the rate doubles for every 

10°C temperature increase.  In this case, this rule is a reasonable estimate.  The 

decomposition rates varied slightly for each different type of formulation.  It appears that 

the higher the hydrogen peroxide concentration, the slower the decomposition was.  

This falls in line with kinetics because hydrogen peroxide is much more stable than 

peracetic acid.  Since PAA decomposes into acetic acid and water, these product turn 

to reactants that reform PAA.  This helps maintain the chemical equilibrium of the 

formulation.   
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Referring back to Table 3, the data shows the activation energy and the pre-

exponential factor were fairly consistent within the different formulations that were 

tested, even with the large variation in the decomposition rates.  The determined values 

compared well to the few values found in literature.  The values also coincide with 

values obtained from samples that were verified at third party laboratories.  Literature 

values of 66.15 kJ/mol and 70.20 kJ/mol were found [38, 39] and somewhat compare to the 

experimental values determined here.  The activation energy value also makes sense 

when comparing to other peroxygen compounds from Table 1.  Since PAA is less 

stable, it makes sense that the energy required to start decomposition will be lower than 

the other peroxygen compounds. 

4.2 Enthalpy of Decomposition Determination 

 It was difficult to find a good method that would be able to accurately determine 

the values with good reproducibility.  The values obtained in this experiment versus 

some tests that were performed at outside labs compare well, with the internal tests 

being more accurate.  Two of the formulations were sent for testing and the results are 

shown in the Table 5.  The tests that were run during this experiment showed lower 

percent replicate standard deviation (% RSD) value, which shows better reproducibility.  

Increased experience led to improvements in experimental data collection and analysis.   

 Using the values that were found in Tables 4, an effort was made to determine a 

linear equation that could be used to calculate the enthalpy values.  First, a simple 

linear regression was executed comparing the active oxygen in the formulation versus 

the energy from the decomposition of the formulation.  Figure 19 shows this plot.  This 
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is a good correlation but there is still some unexplained variation.  Another step was to 

use a multiple regression using all the components from the formulation to see if there is 

some contribution from the acetic acid and the water.  The multiple regression that 

included the moles of peracetic acid, hydrogen peroxide, acetic acid and water had a 

high correlation with an R2 of 0.992.  However, the p-value that was associated with the 

acetic acid value was over 0.05 and the water value was highly correlated with other 

variables and was removed.  The equation was as follows: 

                                                     

                                                                                                           

The next regression removed the acetic acid and water value to see how the equation fit 

with the molar values of PAA and hydrogen peroxide separated.  This time the R2 was 

also 0.992 but the p-values for each were lower than 0.05.  The linear equation is: 

                                                                                              

The equation only has minor changes to the coefficients for PAA and hydrogen 

peroxide.  It also makes sense because the majority of the energy of the decomposition 

will come from the PAA and hydrogen peroxide with some energy being consumed by 

the vaporization of water and acetic acid. 

 The coefficients in Eq. (33) should correspond to known values of the enthalpy of 

decomposition.  For hydrogen peroxide, a value found for the heat of decomposition is 

187.8 kJ/mole.  This value is high compared to the coefficient in the above equation but 

the enthalpy values found by the DSC may not be as large in magnitude as it should be.  

Since the crucible is sealed, this will raise the pressure, in turn, raising the boiling points 
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of the compounds in the formulation.  This will only help so much so the extent of the 

energy release of the formulation may be varied due to the amount of volatiles in the 

vapor space.  It is assumed that the coefficient for PAA is also lower than other methods 

but literature data for PAA has not been found.   

  Some methods have been found in literature that use various parameters 

determined from the DSC to also establish the values of activation energy and pre-

exponential factor.  Many of these methods only require the heating rate of the sample, 

maximum temperature of the exotherm and a fractional rate of reaction.  An example of 

this is a method developed by Homer Kissinger.  This method plots the heating rate of 

the sample versus the maximum temperature of the exotherm [41].  This method is not 

valid for this type of work because these formulations sometimes decompose with two 

different peaks in the exotherm depending on the concentrations of PAA and hydrogen 

peroxide.    Figure 21 shows an example of the issue.  It is possible to determine the 

maximum value for each but, when it comes to determining the formulations kinetic 

parameters, it is better to simplify the calculation by using the energy from the full 

decomposition.  At a minimum, utilizing the full decomposition energy and using it as a 

worst-case scenario can be performed. 
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Figure 21: Trace for the decomposition of a formulation with two peaks.  
We theorize that the PAA decomposes first giving the first peak followed by 
hydrogen peroxide at a higher temperature. 
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4.3 SADT Values for Various Formulations 

The SADT values in Table 6 show that there is a large variation even within the 

same type of formulation.  It is worthwhile to see that small changes within the 

formulation can be resolved in order to make a final determination to move forward with 

more development work.  The values also tend to be more conservative since the 

surface area used is based on the surface of a sphere for packages or container sizes 

in practice.  The image shown in Figure 22 shows that the surface to volume ratio is the 

lowest when using the surface area of a sphere.  This helps to keep the values that are 

calculated here conservative versus using the actual shape of a package.   
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Figure 22: Surface to volume ratios of various 
shapes.  The spherical shape shows a 
conservative view of the surface to volume ratio of 
all the geometric shapes [42]. 
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It is also important to note the changes that relate with changes in the various 

parameters.  The activation energy is the most critical since a relatively small change of 

10% can have a significant impact on the final value.  Looking at Eq. (12), it makes 

sense since this parameter is tied to the exponential.  When the pre-exponential factor 

was varied, the inverse change in values compared to what was seen with the activation 

energy seems logical since this value is also viewed as a collision factor.  If the number 

of collisions is increased then this would lower the temperature required to initiate the 

decomposition.   

It is difficult to state whether this method completely agrees with outside labs 

since outside lab results do not compare well to each other.  The limited data available 

in literature also makes it difficult to validate this method.  Each lab conducted the test in 

a different manner.  Lab #1 conducted the test with a TAM microwatt calorimeter while 

lab #2 tested the samples using an adiabatic testing chamber.  Chapter 1 has a 

description of the other methods.  It was instructed to each lab to passivate all surfaces 

that will come into contact with the formulation to prevent any outside contamination that 

will bias the results.  With each lab conducting the testing in different ways, there is an 

expectation of some differences in the final calculated value.  However, there is also the 

expectation that these validated tests will predict the SADT value within 5°C of each 

other. 

The values that were acquired from outside testing shown in Table 7 have quite a 

bit of variability between labs with each sample.  There also appears to be quite a bit of 

variation within the same formulation. The values for the SADT that were calculated in 

this study are similar to outside labs and found with similar variation within the same 
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formulation.  Formulation 1D displays a rare exception when a lab was unable to detect 

an exotherm over the course of the test.  The value shown is counter to what one would 

expect with a peroxygen compound and does not compare to any value that was found 

during this study or at the other lab that conducted the test.  This could have been due 

to a leak or contaminant in the system. 
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Chapter 5: Conclusion 

The kinetic data that was calculated by the means described in this paper using 

simple kinetic equations along with simple concentration monitoring over time were 

reasonable with some differences present between the formulations.  There are some 

concerns about the variation in some of the rate constants but this is most likely due to 

titration error.  It would be beneficial for future work to increase the amount of replicates 

with the formulations to provide the opportunity to do some better statistical analysis.  

This could either help to determine if the cause of the high standard deviations is truly 

from titration error or possibly from the complex equilibrium of the formulations.   

Once the Arrhenius parameters were calculated, the values looked fairly 

consistent between the formulations.  There were a couple formulations that stood out 

with significantly higher or lower activation energies.  However, there was an overall 

trend of the system having lower activation energy compared to other organic 

peroxides.  These values are justified since the potential for violent decompositions is 

inversely related to the peroxygens molecular weight [1].    

The enthalpy data seemed consistent and reproducible when the data was 

compared to outside labs.  The data fit a multi-linear equation when the different 

components were used rather than fitting only the active oxygen versus heat of 

decomposition.  This makes sense because the energy given off by each compound 

should be different rather than assuming that it is the same from each active 

component.  In the case of the coefficients for the multiple regressions, some additional 

work should be done to determine the equilibrium shift when the temperature is 
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increased in the system.  This could help increase the coefficient on hydrogen peroxide 

to referenced bond enthalpies.  This may indirectly help to determine a value for 

peracetic acid in the liquid phase.   

The self-accelerating decomposition temperatures appeared to be consistent 

with the method described in this work. Data generated within this study appeared to be 

more consistent than the data generated by outside labs.  This indicates that this 

method is a potentially reliable way to screen new formulations for SADT values.  

Additional research would have to be performed in order to conclude that method 

described in this work is consistently more reliable than previously used methods 

performed in outside labs. 

A viable next step would be to try to use a different type of Arrhenius equation 

that is derived from the Transition State Theory.  Eq. (34) relates the translational, 

rotational and vibrational contributions of the molecules during the reaction.  The main 

Arrhenius equation is derived from the collision theory that assumes that molecules are 

hard spheres rather than complex geometrical shapes.  Due to this difference, there 

should be some differences in the calculated kinetics between the two equations.  This 

equation also takes into account the concentrations of the activated complex along with 

the concentrations of the reactants that forms the activated complex [22].   

    
   

  

   

     
    

   

  
                                                                                                         

 Another idea would be to see how this applies to formulations with significant 

changes to the equilibrium.  Typically, these cases only applied small additions of 

stabilizers or catalysts on the order of less than 1% of the total formulation.  It would be 
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interesting to see if this method would apply to significant increases of these additives 

on the order of multiple percent.  It would be assumed that this method would still apply 

as long as the decomposition kinetics continues to trend as first-order. 
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