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Abstract 

A Forensic Investigation into the Possible Origins of Three Human Skeletons 

The Anthropology Department at Buffalo State has three human skeletons that have 

been part of the department’s collection for several years. The origin of the skeletons is 

currently unknown. Modern DNA techniques coupled with forensic anthropological 

techniques may now allow us to determine with some certainty the geographic origin of the 

skeletons. Ancestry, sex, age, and stature were assessed using current anthropological 

techniques. Afterwards, one tooth from each of the three skeletons was extracted, pulverized 

and DNA was isolated. Y-STR fragment size analysis of the DNA samples can provide 

information about the patrilineage of male individuals. Mitochondrial DNA sequencing 

analysis can provide information about the matrilineage of the individuals. All of the 

individuals appear to be two males and one probable female of Eurasian ancestry, ranging in 

stature from 5’3” to 5’8”, and all estimated to be over 30 years old at time of death. 
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I. Introduction 
 

In the field of forensic science, ancestry analysis is most commonly conducted by 

forensic anthropologists analyzing skeletal remains. In cases such as mass disasters like the 

September 11th attacks of the World Trade Center, or archaeological cases like the discovery 

and analysis of the fate of the Romanov family, a combination of anthropometric and DNA 

analysis can be employed. Traits such as ancestry, sex, age at time of death, and stature can 

be determined following forensic techniques. These skeletal estimations can be 

complemented by DNA analysis to determine matrilineage and patrilineage. 

For the research presented in this paper, the Department of Anthropology of SUNY 

Buffalo State requested a biological assessment of three partial skeletons of individuals of 

unknown origins. The individuals’ remains were purchased by the department at an unknown 

time, but believed to be in the early 1970’s and 80’s. Any identifying paperwork regarding 

these individuals is unavailable to the department. 

1.1 Osteological Analysis 

Forensic anthropology incorporates most of the techniques originating with the 

analysis of human skeletal material. The use of anthropometry in the field of forensic science 

and medicine dates to 1882 when Alphonse Bertillon, a French police expert, invented a 

system of criminal identification based on anthropometric measurements (1). Human skeletal 

remains often will reach the forensic anthropologist without any documentation of their 

biological profile, or their individual ancestry, sex, age, and stature. Literature on skeletal 

analysis is composed of books and articles describing the development of methods to allow 
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precise identification of individual traits, research that continues even after a century of 

intensive study (1-19). 

  Methods for determining the sex of an individual based upon skeletal remains can be 

broadly divided into two groups: morphological or "subjective" observations; and metric or 

"objective" techniques. Size and shape characteristics usually allow for the unambiguous 

sorting of human from nonhuman bone, even fragmentary material. Due to having 

incomplete skeletons, the methods selected for the assessment of a biological profile all rely 

on either the skull or os pubis. Although still frequently damaged by taphonomic processes, 

these bones show the most variation between populations to allow for the development of a 

biological profile (2-5) 

The determination of sex can appear to be an either/or decision, or in some cases an 

ambiguous assessment, even if there are only a few skeletal characteristics that allow a 

scientist to make this assessment (2). The other characteristics; ancestry, age at death, and 

stature, are not as easily determined. Simple divisions for sorting and categorizing do not 

exist, and rather the traits are typically assessed by phases and groupings of populations. 

1.1.1 Estimation of Sex: Phenice Method 

 The anthropological analysis for estimating sex from skeletal material in a forensic 

context is integral for the identification of human remains. According to researchers, such as 

Spradley and Jantz, the pelvis is regarded as providing the highest accuracy levels for sex 

determination (5). Although many bones of the skeleton present size-related sexual 

differences, those of the pelvis usually display marked sex differences in morphology 

independent of size (6-7). 
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 In 1969, Phenice called attention to three aspects of the pelvis that he felt were 

especially useful for estimating sex from skeletal remains; the ventral arc, the subpubic 

concavity, and the medial aspect of the ischio-pubic ramus (8). By using the three traits, 

Phenice was able to estimate the sex of an individual with an accuracy of 96% (7). These 

traits are highlighted in Figure 1. 

 The ventral arc refers to a “slightly elevated ridge of bone that sweeps inferiorly and 

laterally across the ventral surface of the pubis, merging with the medial border of the ischio-

pubic ramus” (7). Phenice reported that the ventral arc had only been detected in females. He 

suggested that whereas males may present a similar ridge, it does not match the above 

definition when the bone is oriented properly (2). In an experiment by Rogers and Saunders, 

an accuracy of 86.9% was observed when estimating sex with only the ventral arc (6). 

 The subpubic concavity refers to a lateral recurve in the dorsal ischio-pubic ramus a 

short distance below the lower margin of the pubic symphysis. Phenice describes this as a 

female characteristic, noting, however, that some males display a “slight hint” of the trait (7). 

Rogers and Saunders report an accuracy of 83.8% when estimating sex with only the 

subpubic concavity (6). 

 The ischio-pubic ramus refers to the thin, flat piece of bone connecting the pubis to 

the ischium (2). Phenice noted that in males, the medial aspect of the ischio-pubic ramus 

displays a broad, flat surface. In contrast, in females, this area more frequently presents a 

ridge (7). Rogers and Saunders report an accuracy of 80.0% when estimating sex with only 

the ischio-pubic ramus (6). 
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 To examine the usefulness of these traits in estimating sex, Phenice examined pelvic 

bones of 275 individuals from the Terry Collection; all representing adults of known sex. Of 

the 95 females examined, 43 were of European ancestry and 52 of African ancestry. Of the 

180 males, 160 were of European ancestry and 20 of African ancestry. Using the three 

criteria discussed above, Phenice was able to estimate the sex with an accuracy of 96%, with 

his procedure being slightly more accurate for females than for males and slightly more 

accurate for individuals of European ancestry than for those of African ancestry (7).  

Many researchers have found the Phenice technique to be useful and it has stimulated 

additional research. Sutherland and Suchey tested aspects of the Phenice technique on 1284 

pubic bones of known sex. Since the pubic bones had been removed from cadavers not all the 

Phenice features could be easily observed. Using only the ventral arc, they were able to 

estimate sex with an accuracy of 96% (9). 
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a)  

b)  

c)  

Fig. 1. Images of the pubic regions of 2 human skeletons used in the Phenice method:  a) the 

ventral arc, b) the subpubic concavity, and c) the ischio-pubic ramus (2). 
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1.1.2 Estimation of Sex: Buikstra & Ubelaker Method by Cranial Traits 

 Not all forensic cases provide the luxury of a complete skeleton. If an individual is 

left exposed in an outdoor context, taphonomic processes may impede the recovery of 

skeletal elements. For instance, some cases may consist only of a cranium. In these cases, 

estimation of sex must be performed using only cranial traits. However, the use of only the 

cranium is not ideal because these traits are less reliable than estimation by the pubic region. 

  The expression of sexually dimorphic features of the skull show the greatest relative 

growth from childhood to adulthood. The growth of female facial features begins to slow 

around the 13th year of life and maturation is completed soon afterward, while males enter a 

growth spurt that continues through adolescence with maturation completed in early 

adulthood. However, since this is a general pattern that varies between individuals, a certain 

amount of overlap in the size of male and female features is inevitable (10). 

Although male skulls are generally larger and have heavier muscle attachments than 

skulls of females, substantial population-based variation exists. Traits that are sexually 

dimorphic in one population may be much less so in another. Therefore, standards of skeletal 

material were used to create a set of recommended methods for documenting adult sexually 

dimorphic skeletal features. One of the objectives was to devise a simple system that 

produced comparable results when used by different scientists (11). The cranial traits, 

detailed in Buikstra and Ubelaker, included the nuchal crest, mastoid process, 

glabella/supraorbital area, supraorbital margin, and mental eminence (Figure 2). 
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Fig. 2. Standard for scoring cranial traits from Buikstra and Ubelaker. The numbers 

below each example are the scores to be assigned to specimens whose morphology most 

closely resembles the condition illustrated. 1 is considered to be feminine and a score of 2 

is probable female, while 5 is considered to be masculine and 4 is probable male. A score 

of 3 is considered to be ambiguous (2). 
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1.1.3 Estimating Age at Death: Suchey-Brooks Method by Pubic Symphysis 

The estimation of the age of adult skeletons is still a continually-developing area in 

forensic and archaeological fields. Adult age estimates are based on “wear and tear” 

indicators such as skeletal degeneration and dental and bone remodeling. Most indicators of 

age have been tested using various skeletal collections of known age (13).  

Age estimation depends in part on the skeletal elements available for analysis; 

different bones are more resilient to damage caused by various taphonomic processes. As a 

result, there is some bias based on preservation. Sex and population specificity are also 

important for determining age at death. Because male and female growth trajectories diverge, 

many current aging standards, which were formulated using standard reference samples, 

provide separate data for the two sexes (3). 

Age estimation based on changes in the pubic symphyseal face has been a long-

favored technique. Among the earliest to develop a protocol for scoring degenerative changes 

in the pubic symphysis was Todd (14). A 10-phase system, Todd’s standards remained 

unchanged until research performed by Brooks provided an updated system (3). Due to the 

apparent limitations, Suchey and Brooks assembled a set of standards from a large sample 

amassed between 1977 and 1979 from individuals autopsied the Office of the Chief Medical-

Examiner, County of Los Angeles. This sample, which contained 739 male samples and 273 

female samples, included demographic information and medical history (15). This resulted in 

a new series of pubic standards that incorporated a focus on the total pattern of the 

symphyseal face and degradation of the surface with age (Figure 3). Estimations are based 

on characteristics including billowing/smooth/finely-grained surface, the development of 

ridges, and rim erosion. Using this system requires the comparison to six-phase sex-specific 



9 
 

reference standard, according to age-related osteological features common to both males and 

females, for which the mean age and standard deviation of each phase are given by sex 

(Table 1). 

 

Fig. 3. The Suchey-Brooks pubic symphysis scoring system of the six stages (2). 
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Table 1.  

Statistics for the Suchey-Brooks phases in females and males. (2). 

 Female (n=273) Male (n=739) 

Phase Mean 95% Range Standard Dev. Mean 95% Range Standard Dev. 

1 19.4 15-24 2.6 18.5 15-23 2.1 

2 25.0 19-40 4.9 23.4 19-34 3.6 

3 30.7 21-53 8.1 28.7 21-46 6.5 

4 38.2 26-70 10.9 35.2 23-57 9.4 

5 48.1 25-83 14.6 46.6 27-66 10.4 

6 60.0 42-87 12.4 61.2 34-86 12.2 

 

1.1.4 Estimating Age at Death: Lovejoy Protocol by Auricular Surface 

 Along with the pubic symphysis, the auricular surface of the ilium is one of the most 

common locations used for the assessment of age at death. The original standards for 

estimating skeletal age at death from the auricular surface of the ilium were developed by 

Lovejoy et al. using archaeological samples from the Libben collection, American cadaver 

collections from the early twentieth century from the Hamann-Todd collection, and forensic 

cases from the Cuyahoga County Coroner’s Office (4,16). 

 Age changes in the auricular surface are relatively well-defined and sufficiently 

regular to provide accurate estimates of age at death, though they are somewhat more 

difficult to interpret than those used for pubic symphyseal aging (16). In burial contexts, the 

auricular surface often preserves better than the pubic symphysis and the morphological 
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changes continue well into the sixth decade of life. However, validation studies have shown 

that the auricular surface method suffers from problems with replicability (4,17). 

 The changes on the auricular surface due to aging, unlike those on the pubic 

symphysis, extend well beyond the age of 50. Lovejoy describes age-related changes to the 

auricular surface, listed in Table 2, that include changes in surface granulation, 

microporosity, macroporosity, transverse organization, billowing, and striations. As age 

increases, granularity coarsens, and the appearance of billowing and striations reduces 

dramatically. In the later stages of life, the surface becomes increasingly dense and irregular, 

losing all evidence of transverse organization (2,16). Examples of these morphological 

changes are shown in Figure 4. 

 

Fig. 4. Modal changes to the auricular surface, as described by Lovejoy. Phases are further 

described in Table 2 (2). 
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Table 2.  

The assessment of skeletal age, with provided descriptions for each highlighted phase from Figure 4, 

as described by Lovejoy (2). 

Phase Age Range Description 

Phase 1 20-24 Billowing and very fine granularity 

Phase 2 25-29 Reduction of billowing but retention of youthful appearance 

Phase 3 30-34 General loss of billowing; replacement by striae, coarsening of 

granularity 

Phase 4 35-39 Uniform coarse granularity 

Phase 5 40-44 Transition from coarse granularity to dense surface; this may take 

place over islands on the surface 

Phase 6 45-49 Completion of densification, with complete loss of granularity 

Phase 7 50-59 Dense irregular surface of rugged topography and moderate to 

marked activity in periauricular areas 

Phase 8 60+ Breakdown with marginal lipping, microporosity; increased 

irregularity, and marked activity in periauricular areas 

 

 

1.1.5 Estimation of Stature 

 Reconstruction of stature by way of measuring long bones has an established practical 

application in forensic identification. Although a variety of bones have been used to estimate 

stature, the most reliable results are based on long bone lengths and particularly the bones of 

the lower limbs (18). The correlation between bone length and stature is imperfect in living 

populations and varies between populations. Based on the studies of individuals of known 

statures, researchers derived regression formulae to estimate stature (19,20). 

 Trotter and Gleser developed their formulae for estimating male stature based on 

individuals killed in World War II and the Korean War, whose remains were brought by the 

American Graves Registration Service, which allowed long bones to be measured prior to 
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final burial. Female equations were derived from the Terry collection. Their formulae were 

divided based on “racial” groups and sex, when applicable (Table 3) (2,21).  

 

 

Table 3.  

Equations used to estimate stature, in centimeters, with standard error, from the long bones of 

various groups of individuals (2,22).  

White Males a Black Males a 

3.574 x Hum + 57.21                       ± 5.71 

4.525 x Rad + 61.22                        ± 5.70 

4.534 x Uln + 53.33                         ± 5.66 

2.701 x Fem + 48.10                       ± 5.12 

2.891 x Tib + 62.95                         ± 5.06 

2.832 x Fib + 66.96                         ± 5.15 

3.277 x Hum + 65.46                       ± 5.72 

4.235 x Rad + 63.46                         ± 5.07 

3.979 x Uln + 62.95                         ± 5.79 

2.455 x Fem + 56.66                        ± 4.84 

2.455 x Tib + 7548                           ± 5.03 

2.665 x Fib + 69.39                          ± 4.53 

White Females a Black Females a 

2.534 x Hum + 86.62                       ± 5.32 

3.530 x Rad + 83.29                        ± 4.81 

3.346 x Uln + 82.82                         ± 4.51 

2.624 x Fem + 49.26                       ± 3.58 

2.351 x Tib + 80.11                         ± 4.26 

2.487 x Fib + 76.51                         ± 4.16 

3.785 x Hum + 47.35                       ± 4.56 

3.781 x Rad + 75.20                         ± 5.01 

3.285 x Uln + 80.70                         ± 4.18 

2.449 x Fem + 54.86                        ± 4.34 

2.855 x Tib + 58.20                          ± 3.83 

2.993 x Fib + 55.83                          ± 4.29 

East Asian Males b Hispanic Males b 

2.68 x Hum + 83.19                         ± 4.25 

3.54 x Rad + 82.00                          ± 4.60 

3.48 x Uln + 77.45                           ± 4.66 

2.15 x Fem + 72.57                          ± 3.80 

2.40 x Fib + 80.56                           ± 3.24 

2.92 x Hum + 73.94                         ± 4.24 

3.55 x Rad + 80.71                           ± 4.04 

3.56 x Uln + 74.56                           ± 4.05 

2.44 x Fem + 58.67                          ± 2.99 

2.50 x Fib + 75.44                            ± 3.52 

a) Data for White and Black ancestral groups from Wilson et al. (2010).  

b) Data for Asian and Hispanic ancestral groups from Trotter (1970). 
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1.1.6 Assessing Ancestry: FORDISC 3.1 

 Ancestry estimation, or estimation of familial origin, is most commonly accomplished 

through statistical analysis of measurements from the cranium. This metric analysis relies on 

the identification of defined landmarks on the skull. Twenty-four cranial and nine mandibular 

measurements are in use today based on the fact that they represent the overall craniofacial 

complex and are referred to as inter-landmark distances (ILDs) (23). ILDs are commonly 

employed by forensic scientists to aid in the creation of the biological profile, especially for 

the estimation of ancestry using the program FORDISC 3.1. The 24 cranial measurements 

are listed in Table 4. 

FORDISC 3.1 is a discriminant function analysis program that contains craniometric 

data from recent population groups and uses standard, well-defined measurements for the 

estimation of ancestry (24). The program has a user-friendly interface where measurements 

from an unknown skull are entered into the program and Discriminant Function Analysis is 

performed for comparison to reference groups. FORDISC 3.1 is arguably the most widely 

used program for ancestry estimation, with the authors of the program striving to continually 

update the Forensic Data Bank (FDB) samples with current reference data (25). The FDB has 

over 2400 cases, which includes extensive demographic information for many cases, 

including place of birth, medical history, occupation, stature, and weight. The skeletal 

information for cases includes cranial and postcranial metrics, various aging criteria scores, 

and non-metric cranial information (24). 

FORDISC relies on metric analysis of cranial features in order to develop an ancestral 

profile. By using these physical characteristics, the data represents a form of ‘racial’ ancestry. 
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This cannot be directly compared to ancestry developed using mitochondrial DNA, since a 

biological race does not exist. 

 

Table 4.  

List of the 24 cranial measurements used in the FORDISC 3.1 program corresponding with 

Figure 5. 

Maximum Cranial Length (GOL) Nasal Height (NLH) 

Maximum Cranial Breadth (XCB) Nasal Breadth (NLB) 

Bizygomatic Breadth (ZYB) Orbital Breadth (OBB) 

Basion-Bregma Height (BBH) Orbital Height (OBH) 

Cranial Base Length (BNL) Biorbital Breadth (EKB) 

Basion-Prosthion Length (BPL) Interorbital Breadth (DKB) 

Max. Alveolar Breadth (MAB) Frontal Chord (FRC) 

Max. Alveolar Length (MAL) Parietal Chord (PAC) 

Biauricular Breadth (AUB) Occipital Chord (OCC) 

Upper Facial Height (UFHT) Foramen Magnum Length (FOL) 

Minimum Frontal Breadth (WFB) Foramen Magnum Breadth (FOB) 

Upper Facial Breadth (UFBR) Mastoid Height (MDH) 
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1.2 Skeletally Isolated DNA 

In forensic investigations, skeletal remains can be amongst the most challenging for 

genetic DNA analysis. Factors such as temperature, humidity, pH and geochemical properties 

of the soil and the presence of microorganisms affect the preservation and contamination of 

the DNA in skeletal remains (26,27). However, archaeological samples as old as 130,000 

years old have had water-soluble DNA successfully extracted and analyzed (28). In many 

forensic cases, teeth and bones are the only potential source of genetic material, and for 

genetic identification, must be able to supply sufficient amounts of high-quality DNA. 

Teeth are among the hardest substances in the human body and have been known to 

survive diverse postmortem circumstances, due to the structure of enamel. These 

circumstances can include, but are not limited to, decomposition, submersion in water, burial, 

and fire damage. The tooth provides an ideal source of DNA, since the pulp is protected from 

external agents by resistant tissues that protect DNA from degradation (29). As reported by 

Hildebrand and Sweet, who analyzed extracted molars for DNA yield, the average molar can 

yield 30.9 µg of DNA material, with a mean concentration of 18.4 µg/mg of powdered tooth. 

However, the yield of DNA from human teeth is highly variable. The reported amount of 

DNA ranged from a minimum of 0.5 µg to a maximum of 97.5 µg (30). 

Other than the enamel, DNA can be extracted from almost all types of dental tissue; 

however, the pulp provides the preferred location where the quantity is greatest due to the 

pulp cavity containing nerve and blood vessels (29). The relative size of the dental pulp is 

approximately proportional to the relative size of individual classes of teeth. Therefore, 

molars typically are better sources of pulpal DNA than incisors. 
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Several methods to access the DNA of human teeth have been used. Among them 

include vertical cross-sections, horizontal cross-sections, use of a mortar and pestle to crush 

the teeth (31), and the use of a freezer mill to cryogenically grind the tooth (30). Once both 

mitochondrial and nuclear DNA isolates have been successful, the samples can potentially be 

used for examining both maternal and paternal ancestry. 

1.2.1 Mitochondrial DNA Analysis 

Mitochondrial DNA (mtDNA) is a 16,569 base pair sequence that, because it is 

inherited solely from the mother and does not recombine (32), makes mtDNA vital for the 

determination of maternal lineage. Of the entire sequence of mtDNA, the most important for 

this investigation is the 1,122 base pair long control region commonly referred to as the D-

loop (Figure 6). This region is the most rapidly-evolving and polymorphic region in the 

human mtDNA genome (32,33). The D-loop is further divided in the Hyper Variable Region 

I (HVRI) and Hyper Variable Region II (HVRII). HVI and HVII regions seem to have 

similar evolutionary processes; however, HVI and HVII show different mutation rates. It also 

seems that mutation rates are more heterogeneous across nucleotide positions in HVII than in 

HVI (34). 

The first complete sequence of human mtDNA, the Cambridge reference sequence 

(CRS), was published in 1981, and has since been revised (rCRS) (35). Recently, the interest 

for human and evolutionary genetics has been in point mutations, also known as single 

nucleotide polymorphisms (SNPs) (36). In human population studies, the analysis of this 

variability allows scientists to infer the history of human evolution and patterns of migration. 

In forensic science, polymorphisms of the mitochondrial DNA genome have been reported as 
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16024 16383 57 372 

useful for identity testing and, in general, for the analysis of degraded material, or for 

samples containing little or no genomic DNA (37).  

 

 

 

 

 

Fig. 6. The human mtDNA control region. The circle represents the circular mtDNA 

genome. Highlighted is the non-coding, or control, region, which includes HVRI, ranging 

from base 16024-16383, and HVRII, which ranges from base 57-372. 

 

 These polymorphisms define unique haplotypes that are passed from parent to 

offspring. Similar haplotypes that share a common ancestor with a SNP mutation can then be 

grouped into a haplogroup. For mitochondrial DNA, all letters of the alphabet except for O 

have been used to define haplogroups. Haplogroups based on control region sequences by 

use of informative SNPs can be sorted geographically, depending on the quality and 

availability of phylogenetic information (38,39). 

Haplogroups A, B, C, and D were the first mtDNA haplogroups to be recognized and 

labelled (40,41). Subsequently, each of these haplogroups has also been found in East Asia, 

along with haplogroups CZ, D4 and G (within M), and A and N9 (within N) broadly 

characterize most of the mtDNA lineages found in Northeast Asian populations; while 

HVRI HVRII 
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haplogroups E and M7 (within M) and B4a and R9 (within N) are largely concentrated in 

populations of continental and island Southeast Asia (41,42).  

 Virtually all European mtDNA lineages can be classified within the framework of six 

haplogroups: N1, N2, X, pre-HV, JT, and U, whose distribution is restricted largely to West 

Eurasia and North Africa. Haplogroups N1, N2, X derive directly from the root of 

haplogroup N and have a minor frequency throughout Europe. The other three haplogroups, 

pre-HV, JT, and U, that derive from haplogroup R, cover altogether approximately 80–90% 

of the total variation in most European populations (41). 

 The root of the mtDNA phylogeny and the most diverse branches are restricted to 

African populations. Enabled by the analysis of whole mtDNA genomes, the first seven 

bifurcations of the phylogenic tree define the distinction of strictly sub-Saharan African 

branches (L0-L6) (41,43). All these branches con be combined to form a phylogenic map 

(Figure 7). Based on the SNPs observed in an individual’s HVRI and HVRII, a rough 

placement for individuals whose mtDNA has been sequenced can be made onto the 

following map.  
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1.2.2 Y-Chromosome Ancestry 

Although Y Chromosome DNA can be analyzed for SNPs, Short Tandem Repeats, or 

STRs (Figure 8) can also be used. STRs are segments of repeated DNA with repeat lengths 

of up to about 6 basepairs and with total lengths usually less than 60 basepairs. Hundreds of 

thousands of STRs are interspersed throughout mammalian genomes. In the human Y-

chromosome, due to the haploid and non-recombining nature of Y-chromosomal DNA, STRs 

can be used for male identification purposes (45,46).  

 

Fig. 8. Core repeat and flanking regions of an STR loci. It consists of 8 repeating units of 

tetrameric nucleotides (TAGA); thus, it is designated as allele 8 (47). 

 

Due to the sensitivity of Y-chromosome-specific STRs for population differentiation, 

one global database was created to reflect the Y-chromosomal landscape: the Y Chromosome 

Haplotype Reference Database (YHRD). The database currently has seven major populations 

defined: Eurasian, African, Afroeurasian, East Asian, Amerindian, Australian Aboriginal, 

Eskimo Aleut, as well as an admixed population. These populations are divided further into 

twenty subgroups (48). These populations and subgroups can be observed in Figure 9. 

Six subgroups exist for the Eurasian population: European, Altaic, Caucasian, Uralic, 

Indo Iranian, and Indian. One of these subgroups, the Europeans, has been differentiated 

further according to genetic analysis (Western, Eastern and Southeastern Europeans). East 

Asian, the largest of the major populations, is divided into eight subgroups: Korean, 

Japanese, Sino Tibetan, Austroasiatic, Thai, Austronesian, Indo Pacific, and Dravidian. The 
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African population is divided into three subgroups: Subsaharan, Afro-American, and Afro-

Caribbean, and the population Afroeurasian is also split into three subgroups: Semitic, 

Berber, and Cushitic. 

Through the use of Y-STRs, genealogical relationships between two or more males 

can be observed for immediate paternal relations, and global clusters of similar STR profiles 

can be observed for popular analysis. In order to observe a group or family of Y-

chromosomes related beyond immediate paternal relations, SNPs on the Y-chromosome can 

be analyzed. This data can result in the development of Y-chromosome haplogroups (49). 

However, Y-haplogroups can be predicted by comparing an individual’s Y-STR haplotype to 

individuals of known STR haplotypes and haplogroups (49,50), an option provided by 

YHRD.  
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1.3 Research Objective 

The objective of this thesis project is to assess the common forensic anthropological 

techniques for the development of a biological profile for three sets of skeletal remains. Also 

assessed was the possibility of extraction of mitochondrial and nuclear DNA from tooth 

samples extracted from the individuals, which if successful could be used to assess maternal 

and paternal ancestry. The results can be combined to provide a background for the three 

individuals stored by the Anthropology department at SUNY Buffalo State. 

.  
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II. Methods and Materials 

2.1 Biological Profile 

For this thesis project, the Anthropology department at SUNY Buffalo State provided 

three individuals for analysis. These individuals either have structural abnormalities, 

including fused or damage bones, or are incomplete. Table 5 lists the numerical label found 

on all bones for each individual, and an approximate percentage of how much of the skeleton 

was available for use. For this paper, Individual 73-02053 will be referred to as Individual A, 

Individual 73-02056 will be referred to as Individual B, and Individual 8339 will be referred 

to as Individual C. All data collection was performed by the same researcher two times, with 

3 weeks between trials to account for data reliability. 

 

Table 5. 

List of individuals assessed, along with approximate completeness of skeleton 

 Numerical Label Amount of Skeleton 

Available 

A 73-02053 60% 

B 73-02056 60% 

C 8339 90% 
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2.1.1 Estimation of Sex: Phenice Method 

Pubic bones of the three individuals were isolated from the skeletons for analysis. 

Individuals A and B both only have half of the pelvis. Individual A has a right os coxa 

available, while Individual B has a left os coxa available. Individual C has the full os coxae 

available, and the right os coxa was selected for analysis. 

Without any knowledge regarding the individuals, the sex of the individuals was 

estimated following the Phenice technique traits described in Figure 1.  

2.1.2 Estimation of Sex: Buikstra & Ubelaker Method by Cranial Traits 

Each individual’s skull was examined for sex estimation based on cranial traits. The 

traits analyzed were those detailed by Buikstra and Ubelaker, detailed in Figure 2. Four 

cranial traits were assessed (nuchal crest, mastoid process, glabella/supraorbital area, 

supraorbital margin) along with one mandibular trait (mental eminence). Scoring from 1 

(female) to 5 (male) was performed as described in Figure 2 in the Introduction. 

2.1.3 Estimating Age at Death: Suchey-Brooks Method by Pubic Symphysis 

The same pubis bones of the three individuals isolated for sex estimation were used 

for estimation of age. For the Suchey-Brooks method, the symphyseal face of the pubis was 

evaluated. Based on the observed and recorded characteristics of the symphyseal face, a 

score of 1-6 was assessed (Figure 3). The score was then applied to Table 1, and a mean and 

minimum age at death based on the 95% range were assessed. 
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2.1.4 Estimating Age at Death: Lovejoy Method by Auricular Surface 

For the Lovejoy method, the auricular surface of the ilium was evaluated. Based on the 

observed and recorded characteristics of the auricular surface, a phase of 1-8 was determined 

(Figure 4). The phase was then applied to Table 2, and a minimum age at death was 

assessed based on the provided age range. 

2.1.5 Estimation of Stature: Revised Trotter Method using Long Bones 

In order to assess stature, measurements were made to the nearest millimeter using a 

Carolina Osteometric Board. Only the humerus, radius, ulna, femur, and fibula were used for 

stature assessment to account for the absence of the tibia in the original Trotter equations. 

Individual A and B each only have one side of the skeleton available, while 

Individual C had both sides of each long bone available except for the femur, which only the 

right was available. Therefore, the right sided option for each long bone was used for 

Individual C. Measurements from the two trials were averaged and rounded to the nearest 

tenth of a millimeter before calculating the estimation of stature. The set of equations to use 

was selected after estimation of ancestry was made using FORDISC 3.1. 

2.1.6 Estimation of Ancestry: 

Analysis by FORDISC 3.1 followed the protocol detailed Ousley and Jantz (24). 

Measurements of the skull were made using both a sliding and spreading caliper, which 

allowed for measurements to the nearest 0.1 cm. 

Initial data analysis included all FDB standard populations within FORDISC. Since 

sex of the individual was uncertain, both sex options were used initially. Afterwards, the least 
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statistically-likely groups were ruled out, beginning with sex, followed by least-likely 

racial/ancestral group. All available FORDISC measurements were initially entered into the 

program, and an assessment was made for the removal of certain measurements. FORDISC 

requires inputting a limited number of measurements, so measurements that fell outside two 

standard deviations according to the programs analytics were eliminated immediately. 

FORDISC provides the estimated likelihood of proper population assignment given the 

provided measurements, and for this research an assessment of ancestral population was 

made with a goal of a minimum of 65% likelihood estimate. 

2.2 DNA Extraction 

2.2.0 General Methods 

All DNA isolation was performed using and following the protocols detailed by the 

PureLink™ Genomic DNA Mini Kit (51). 

 All DNA quantitation was performed using the Qubit 2.0 Fluorometer and the 

appropriate reagents following the protocol for the High Sensitivity dsDNA Assay Kit. 

 Amplification of DNA products for mitochondrial DNA sequencing and nuclear STR 

profiling was performed on the BioRad T100 Thermal Cycler. PCR conditions and reagents 

followed the Forensic Biology Protocols for Forensic Mitochondrial DNA Analysis by the 

NYC Office of Chief Medical Examiner (52). PCR products were analyzed following the 

protocols for the Agilent 2200 TapeStation System using D1000 ScreenTapes. 

PCR products were cleaned following the ExoSAP-IT™ PCR Product Cleanup 

Reagent protocols prior to DNA sequencing. DNA sequencing was performed following the 

protocols and using the BigDye Terminator v3.1 Cycle Sequencing Kit (53). 
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STR analysis was performed using the AmpFlSTR® Identifiler® Plus PCR 

Amplification Kit using the protocols from the provided user guide (54). Y-STR analysis was 

performed using the AmpFlSTR® Yfiler® PCR Amplification Kit following the protocols 

from the provided user manual (55). 

All DNA analysis was performed using the 3500 Series Genetic Analyzer (Figure 

10). POP-7 polymer was used for all sequencing analysis. POP-4 polymer was used 

for all STR analysis. 

 

Fig. 10. Schematic of the 3500 Series Genetic Analyzer (Thermo Fisher). 
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2.2.1 Selection and Destruction of Tooth Samples 

From each of the individuals, one molar was selected for DNA isolation. Samples 

were selected in order to avoid damage to the overall skeleton. Each tooth was rinsed using 

distilled water to remove particulates. Since DNA contamination is a constant threat when 

analyzing skeletal DNA (56,57), each tooth was cleaned following a four-step process. Tooth 

samples were soaked in a detergent/absolute ethanol mixture for a minimum of 5 minutes, 

followed by brief agitation by vortexing. The tooth samples were then rinsed with a 

phosphate buffered saline (PBS) solution to remove and remaining detergent solution, 

followed by a rinse of absolute ethanol to help remove residual PBS solution. Tooth samples 

were then air dried in a SterilGARD Biosafety Cabinet under ultraviolet (UV) light. 

All steps involving the tooth samples were carried out in the SterilGARD Biosafety 

Cabinet to protect from outside DNA contamination. However, it must be noted that the 

chemical laboratories at SUNY Buffalo State are not accredited clean labs and are not 

functionally sterile. 

To combat the risk of DNA contamination all equipment was cleaned using a 10% 

bleach solution, followed by a rinse with 70% ethanol and air dried under UV light. 

Negative controls were created by using nuclease-free water in place of DNA 

samples. A fourth sample, a recently extracted tooth from an anonymous source outside of 

this research project, was provided for testing to confirm that the extraction protocol was 

effective and was submitted to an identical procedure. This tooth was labeled MT and will be 

referred to as such throughout this thesis. 
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The method of extraction was based on protocols developed by Rohland (58) and 

Rothe (59). Tooth samples were first crushed by mortar and pestle to obtain smaller 

fragments for pulverization. Tooth pieces were then made into a fine-grained powder using a 

Wig-L-Bug grinder equipped with a steel vial and ball pestle that were sterilized using a 10% 

bleach solution. 250 mg of tooth powder was added to a mixture of 3600 µL of 0.5 M EDTA 

and 50 µL of 600 mg/mL Proteinase K. The EDTA caused decalcification of the tooth, while 

the Proteinase K caused lysis of the DNA. This solution was incubated in a water bath at 

37˚C with gentle agitation for 18-24 hours. 

The only exceptions to this were two attempts to isolate DNA using tooth MT. In 

these two cases, the incubation temperature was increased to 57 ˚C and incubation was 

allowed to proceed overnight for 18-24 hours to determine if there was a difference in 

quantity of isolated DNA at a higher incubation temperature. The DNA isolation protocol 

continued from this point unchanged. 

2.3 Mitochondrial DNA Analysis 

Isolates of the mitochondrial DNA sequence were obtained using the forward and 

reverse primers detailed in Table 6. With every PCR reaction performed, a negative blank 

was assessed to ensure that no exogeneous DNA contamination had occurred. A positive 

control was run to ensure the primers and PCR set-up were operational. 

Completed sequences were compared to the rCRS using the Basic Local Alignment 

Search Tool (BLAST) from the National Center for Biotechnology Information. Any SNPs 

were recorded and then compared to the PhyloTree mtDNA Tree Build (38) using the search 
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program from https://dna.jameslick.com/mthap in order to place individuals into 

haplogroups, as described in the Introduction. 

Table 6. 

Details of primers used for analysis of mitochondrial DNA. Positions are detailed in Figure 

37 in the Appendix. 

Primer 

Name 

Position and 

Direction 

Primer Sequence 5’-3’ 

A1 Primer F15997 5' CAC CAT TAG CAC CCA AAG CT 3' 

A4 Primer F16209 5' CCC CAT GCT TAC AAG CAA GT 3' 

B1 Primer R16391 5' GAG GAT GGT GGT CAA GGG AC 3' 

B4 Primer R16164 5' TTT GAT GTG GAT TGG GTT T 3' 

C1 Primer F048 5' CTC ACG GGA GCT CTC CAT GC 3' 

C2 Primer F177 5' TTA TTT ATC GCA CCT ACG TTC AAT 3' 

D1 Primer R408 5' CTG TTA AAA GTG CAT ACC GCC A 3' 

D2 Primer R266 5' GGG GTT TGG TGG AAA TTT TTT G 3' 

 

2.4 STR and Y-STR DNA Analysis 

STR profiles were completed to compare to researcher profiles to assess the 

possibility of DNA contamination. The development of an STR profile will also assess the 

biological sex of the individual. If the individual was determined to be male, then the DNA 

sample would be analyzed for a Y-STR profile. Y-STR profiles would then be compared to 

the Y-Chromosome Haplotype Research Database (YHRD) to determine population affinity. 

 

 

https://dna.jameslick.com/mthap


34 
 

III. Results 

3.1 Biological Profile Assessment 

3.1.1 Estimation of Sex: Phenice Method 

When assessing Phenice’s three pubic traits (Table 7), two individuals were assessed 

as male, Individual A and Individual B. Individual C was assessed as female. For Individual 

A, the ventral arc (Figure 1a) and subpubic concavity (Figure 1b) are not present, a 

characteristic found in male samples. The medial aspect of the ischio-pubic ramus (Figure 

1c) could be considered narrower than is typically seen in male samples, but this alone does 

not overrule the other assessed traits. For Individual B, the ventral arc and subpubic 

concavity were not present, while the medial aspect of the ischio-pubic ramus was described 

as broad, all characteristics found in male samples. For Individual C, the ventral arc and 

subpubic concavity were present, while the medial aspect of the ischio-pubic ramus was 

described as sharp and narrow, all characteristics found in female samples. 
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Table 7. 

Assessment of Phenice’s three pelvic features for estimating sex. Descriptions of each feature 

are recorded, along with the overall estimation of sex. 

 
Pelvic Features 

 

Individual Ventral Arc 
Subpubic 

Concavity 

Medial Aspect of 

the Ischio-pubic 

Ramus 

Estimation of 

Sex 

A 

Is not present Is not present Flat, narrow Male 

Is not present Is not present Flat Male 

B 

Is not present Is not present Flat, broad Male 

Flat, is not 

present 
Is not present Flat, very broad Male 

C 

Present Present 
Smooth, not strongly 

present 
Female 

Present Present Smooth, not present Female 

  

 

 

3.1.2 Estimation of Sex: Buikstra and Ubelaker Method 

When assessing Buikstra and Ubelaker’s cranial traits (Table 8), Individual A was 

assessed as probable female, Individual B was assessed as male, and Individual C was 

assessed as probable female. For Individual A, traits such as the Mastoid Process, Mental 

Eminence, and the Supra-Orbital Ridge appeared gracile and were assessed a 1 or 2. The 

Nuchal Crest and the Supra-Orbital Margin were assessed a score of 3, which means sex 

based on these traits is ambiguous. For Individual B, all five traits received a score of 4 or 5, 

leading to an estimation of sex as male. For Individual C, the Mastoid Process, Nuchal Crest, 

Supra-Orbital Ridge, and Supra-Orbital Margin all received a score of 1 or 2, leading to an 
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estimation of sex as female. The Mental Eminence received a score of 3, but this ambiguous 

score was not enough to overrule the four other assessed traits. 

 

 

Table 8. 

Assessment of cranial features for the estimation of sex. An overall estimation of sex was 

made by considering the scores of all. Individual A gave the only ambiguous result, observed 

in the second trial. 1 is most female, 5 is most male. 

 Cranial and Mandibular Traits used in Sex Estimation  

Individual 
Nuchal 

Crest 

Mastoid 

Process 

Supra-

Orbital 

Margin 

Supra-

Orbital 

Ridge 

Mental 

Eminence 

Estimation 

of Sex 

A 

2 1 2 1 2 
Probable 

Female 

3 2 3 1 2 Ambiguous 

B 

5 4 4 4 4 
Probable 

Male 

5 5 4 4 4 Male 

C 

2 2 2 2 3 
Probable 

Female 

2 1 2 1 3 
Probable 

Female 
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3.1.3 Estimation of Age: Suchey-Brooks Method 

Estimation of age was first performed using the Suchey-Brooks method, which 

assessed the pubic symphysis (Figure 11). For each individual, no billowing was present, 

and granularity was fine in size. For Individual A and Individual B, an outline or ridge was 

assessed (Table 9). These two individuals were both assessed as Phase 4, reporting a mean 

age of 35 years, with a minimum age of 21 years. Individual C was assessed as Phase 3, 

reporting a mean age of 31, with a minimum age of 21 years. 

 

 

Table 9. 

Assessment of the characteristics of the surface of the pubic symphysis. Based on features 

determined by Suchey and Brooks. Based on the scored phase, a mean and minimum age was 

estimated. 

Individual Visual Assessment and Description Phase 
Mean 

Age 

Minimum 

Age 

A Finely grained, possibility of some 

striae, outline complete 

Phase 4 35 21 

Phase 4 35 21 

B 
No billowing present, no striae, rim 

is present and nearly complete, no 

depressions, no lipping 

Phase 4 35 21 

Phase 4 35 21 

C 
No billowing or striae, no distinct 

edge, mostly smooth, granularity 

developing 

Phase 3 31 21 

Phase 3 31 21 
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Fig. 11. Pubic symphysis of Individual A (left), B (center), C (right) 

 

3.1.4 Estimation of Age: Lovejoy Method 

Estimation of age was then performed using the Lovejoy method, which assessed the 

auricular surface of the ilium (Figure 12). For Individual A and Individual B, no striae or 

billowing was present, and the surface was finely granular (Table 10). It was also reported 

that densification of the bone was present in one of the trials for Individual B. Individual A 

was assessed as Phase 4, reporting a minimum age of 35 years, while Individual B was 

assessed Phase 4 once and Phase 5 once. The minimum age for this individual was estimated 

at 35 years. Individual C was assessed as Phase 3, reporting a with a minimum age of 30 

years. 
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Table 10. 

Assessment of the characteristics of the auricular surface of the ilium. Based on features 

determined by Lovejoy. 

Individual Visual Assessment and Description Phase 
Minimum 

Age 

A No present striae or billowing, surface is 

smooth/finely granular 

Phase 4 35 

Phase 4 35 

B No present striae or billowing, granularity 

present, densification beginning 

Phase 4 35 

Phase 5 40 

C Appearance of striae, beginning of granular 

development 

Phase 3 30 

Phase 3 30 

 

 

 

    

Fig. 12. Auricular surface of the Ilium of the right os coxae Individual A (left), the left os 

coxae of Individual B (center), and the right os coxae of Individual C (right). 
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3.1.5 Estimation of Stature: Trotter/Wilson Method 

Stature was estimated using the updated set of equations for Caucasian and African 

individuals edited by Wilson, along with the Hispanic and East Asian equations first created 

by Trotter.  Measurements of the long bones (Table 11) were consistent in both trials for all 

three individuals with a maximum difference of 0.1 cm observed in all trials except for the 

measurements of the fibula of Individual C, which differed by 0.2 cm. All measurements 

were averaged and rounded to the nearest 0.1 cm. 

For Individual A, the White Male equation set was selected. The stature for 

Individual A was estimated to be between 5’4” and 5’6.5” with an error of 2 inches. For 

Individual B, the White Male equation set was selected. The stature for Individual B was 

estimated to be between 5’6” and 5’8” with an error of 2 inches. 

For Individual C, two sets of equations were selected, the White Female set and the 

East Asian Male set. This was because the ancestry of Individual C was assessed to be East 

Asian, and sex was estimated to be female. A set of equations for stature estimation of the 

combination was not created by Trotter or Wilson. The stature of Individual C was estimated 

to be between 5’2” and 5’5.5” with an error of 2 inches according to the equations for White 

Females, and an estimated height between 5’3.5” and 5’4.5” with an error of approximately 

1.75’ according to the equations for East Asian Males. 
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Table 11. 

Measurements of long bones (humerus, radius, ulna, femur and fibula) for the estimation of 

stature. Measurements were taken in duplicate to the nearest 0.1 cm.  

 Humerus Radius Ulna Femur Fibula 

A 

30.1 23.2 25.3 42.2 35.9 

30.1 23.1 25.3 42.1 35.9 

Stature (cm) 164.8 ± 5.7 
 

166.2 ± 5.7 
 

168.0 ± 5.6 
 

162.1 ± 5.1 
 

168.6 ± 5.2 
 

Stature (ft) 
5 ft 4.9 in ± 

2.2 in 

5 ft 5.4 in ± 

2.2 in 

5 ft 6.2 in ± 

2.2 in 

5 ft 3.8 in ± 

2.0 in 

5 ft 6.4 in ± 

2.0 in 

B 

31.5 24.4 26.2 44.2 36.2 

31.4 24.4 26.2 44.2 36.2 

Stature (cm) 169.8 ± 5.7 
 

171.6 ± 5.7 
 

172.1 ± 5.7 
 

167.5 ± 5.1 
 

169.5 ± 5.1 
 

Stature (ft) 
5 ft 6.8 in ± 

2.2 in 

5 ft 7.6 in ± 

2.2 in 

5 ft 7.8 in ± 

2.2 in 

5 ft 5.9 in ± 

2.0 in 

5 ft 6.7 in ± 

2.0 in 

C 

29.1 23.2 24.8 41.2 34.5 

29.1 23.2 24.8 41.1 34.3 

Stature for 

WF (cm) 

160.4 ± 5.3 
 

165.2 ± 4.8 
 

165.8 ± 4.5 
 

157.4 ± 3.6 
 

161.6 ± 4.2 
 

Stature for 

WF (ft) 

5 ft 3.1 in ± 

2.1 in 

5 ft 5.0 in ± 

1.9 in 

5 ft 5.3 in ± 

1.8 in 

5 ft 2.0 in ± 

1.4 in 

5 ft 3.6 in ± 

1.6 in 

Stature for 

EAM (cm) 

161.2 ± 4.3 
 

164.1 ± 4.6 
 

163.8 ± 4.7 
 

161.1 ± 3.8 
 

162.6 ± 3.2 
 

Stature for 

EAM (ft) 

5 ft 3.5 in ± 

1.7 in 

5 ft 4.6 in ± 

1.8 in 

5 ft 4.5 in ± 

1.8 in 

5 ft 3.4 in ± 

1.5 in 

5 ft 4.0 in ± 

1.3 in 
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3.1.6 Estimation of Ancestry: FORDISC 3.1 

The final part of the biological profile was the estimation of ancestry. The 

measurements of the twenty-four cranial measurements were recorded in Table 12. The two 

trials were averaged before being input into FORDISC. For Individual A, the Basion-

Prosthion length showed the largest change between trials at 9 mm, and was eliminated from 

FORDISC analysis immediately, while the rest of the traits had a maximum difference of 3 

mm and were considered for analysis. For Individuals B and C no measurements fell outside 

of 3 mm difference between trials, so all measurements were input into FORDISC initially. 

Some measurements were eliminated from analysis due to each individual having 

their calvarium, or skullcap, removed as illustrated in Figure 32. This would have 

specifically affected the occipital chord measurement. These measurements routinely showed 

to be outside of three standard deviations and were eliminated from analysis, as exemplified 

by Figure 13a. 

To simplify classifications made by the program, measurements outside of two 

standard deviations were removed from analysis. Also removed were ancestral groups of the 

opposite sex than that estimated for individuals. For example, Individual C was estimated to 

be female, so any male ancestral groups were eliminated. After these eliminations, a goal 

total correct assessment of 65% was met (Figure 13c), and FORDISC classified the 

individual into an ancestral group based on the measurements distance from the mean. 
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Table 12. 

Cranial measurements taken for ancestry assessment with FORDISC 3.1 program. Cranial 

measurements were measured in millimeters. Measurements were averaged and rounded to 

the nearest millimeter for FORDISC analysis (mm). 

 A B C 

Maximum Cranial 

Length (GOL) 
166 165 179 179 166 166 

Maximum Cranial 

Breadth (XCB) 
123 123 127 128 121 120 

Bizygomatic Breadth 

(ZYB) 
111 110 128 128 109 109 

Basion-Bregma Height 

(BBH) 
123 123 125 125 124 124 

Cranial Base Length 

(BNL) 
95 95 100 99 95 94 

Basion-Prosthion Length 

(BPL) 
95 86 95 95 90 91 

Max. Alveolar Breadth 

(MAB) 
56 55 65 66 52 52 

Max. Alveolar Length 

(MAL) 
50 49 54 54 50 50 

Biauricular Breadth 

(AUB) 
102 101 115 115 100 100 

Upper Facial Height 

(UFHT) 
59 57 66 66 62 61 

Minimum Frontal 

Breadth (WFB) 
89 89 95 95 86 86 

Upper Facial Breadth 

(UFBR) 
97 96 110 109 96 96 

Nasal Height  

(NLH) 
46 46 51 51 44 44 

Nasal Breadth  

(NLB) 
19 20 28 29 25 24 

Orbital Breadth 

 (OBB) 
36 35 41 41 37 38 

Orbital Height  

(OBH) 
33 33 35 35 33 34 

Biorbital Breadth (EKB) 
85 87 99 98 89 88 

Interorbital Breadth 

(DKB) 
21 21 28 29 21 21 

Frontal Chord  

(FRC) 
107 107 110 109 102 102 

Parietal Chord  

(PAC) 
100 100 115 113 106 106 

Occipital Chord (OCC) 
89 89 86 84 81 81 

Foramen Magnum 

Length (FOL) 
31 31 35 35 33 33 

Foramen Magnum 

Breadth (FOB) 
26 26 30 30 26 25 

Mastoid Height (MDH) 
20 23 28 29 24 21 
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a)  

b)  

c)  

Fig. 13 An illustration of the FORDISC process for assessing ancestry. A) Initial assessment 

of cranial measurements and sorting into ancestral of Individual C by the FORDISC 

program. The program assesses each input measurement based on the means of all included 

ancestral groups. Each – or + indicates the measurement is at least on standard deviation 

from the mean. The measurements are also classified into the ancestral group that is closest 

based on standard deviations. Using all measurements, Individual C is initially sorted into the 

Black Female (BF) group. B) Final classification of Individual C based on ancestral groups 

within FORDISC 3.1. After removal of measurements two standard deviations of more, and 

removing any male ancestral groups, Individual C was sorted into the Japanese Female (JF) 

ancestral group. C) The probabilities assessed for each ancestral group compared to the final 

selection of measurements. The correct percentage is an indication of the number of matches 

between the current case and the number of cases within the lone ancestral group. Important 

is the total correct matches, which totals all correct matches compared to all cases for the 

included ancestral groups. A minimum of 65% total correct matches was required for this 

thesis. 
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The final estimation of ancestry is reported in Table 13. Individual A was estimated 

as a White Female, with a total correct assessment of 69.2%. Individual B was estimated to 

be a White Male, with a total correct assessment of 77.4%. Individual C was estimated to be 

an East Asian Female, with a total correct assessment of 66.9% 

 

 

 

 

 

 

Table 13. 

Sex and ancestry assignments for FORDISC of the three individuals. 

Individual Sex Ancestry Assignment Total Correct 

A F European (Caucasian) 69.2% 

B M European (Caucasian) 77.4% 

C F Japanese (East Asian) 66.9% 
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3.2 Isolation of DNA 

After the biological profile was completed, a molar was extracted from each 

individual, and at least two attempts to isolate DNA were performed. Quantifiable amounts 

of DNA were reported in Table 14 for all attempts. The Qubit Fluorometer has a limit of 

detection of 0.200 ng of DNA when using the High Sensitivity Assay Kit.  

For tooth MT, isolation attempt 2 and 3 were both altered by increasing the 

incubation temperature to 57 ºC. It was observed that DNA concentrations did increase as 

temperature increased. Less tooth sample was required to reach the same concentrations. 

 

Table 14. 

DNA yield from tooth samples after cleaning. The Qubit 2.0 Fluorometer has a limit of 

detection (LOD) of 0.200 ng/µL. A concentration lower than the LOD is reported as <0.200. 

Sample (Extraction Attempt) Tooth Powder (mg) DNA Yield (ng/µL) 

A (Attempt 1) 201.7 0.571 

A (Attempt 2) 329.9 0.993 

B (Attempt 1) 200.4 <0.200 

B (Attempt 2) 257.3 0.520 

B (Attempt 3) 177.2 0.830 

C (Attempt 1) 208.9 <0.200 

C (Attempt 2) 192.7 0.318 

MT (Attempt 1) 216.22 0.236 

MT (Attempt 2) 131.3 0.216 

MT (Attempt 3) 74.8 0.208 
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3.2.1 Sequencing of Mitochondrial DNA 

Mitochondrial DNA segments were isolated using the DNA primers listed in Table 6. 

After PCR was performed, a check was performed for each individual using the TapeStation 

2200 instrument. Present bands indicated a success, while a lack of bands indicated the run 

failed. For Individual A, the TapeStation results are shown in Figure 14. All runs that were 

confirmed to be successful were sequenced. Figure 15 shows a snapshot of the successful 

sequencing runs for Individual A, for whom large sections of both HVRI and HVRII were 

isolated.  

In HVRI of Individual A, two partial sequences were obtained, and although they did 

not overlap, there was only a loss of 8 bases (Figure 16a).  In HVRII, only one sequence was 

obtained for 191 bases. In this sequence, the genetic analyzer detected some errors, 

highlighted in yellow in Figure 15b. These errors are sizing errors, due to an abnormally 

large peak masking nearby peaks. These errors were manually overridden by the researcher. 

 

 

 

 

 

 

 

Fig. 14. Yield gel results of Individual A developed by TapeStation electrophoresis. Lanes 2 

and 3 represent PCR attempts in HVRI. Lanes 4, 5, and 6 represent HVRII. 
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a)  
 

b)  

Fig. 15. a) Snapshot of the mtDNA sequence from the HVRI obtained from Individual A. 

Two partial sequences from this region were able to be extracted. No base pair errors were 

observed. b) Snapshot of the mtDNA sequence from the HVRII obtained from Individual A. 

One sequence was able to be extracted from the samples. Any errors caused by overlapping 

peaks are highlighted yellow. 

 

a)  

b)  

Fig. 16. Compiled sequences of all DNA fragments from Individual A compared to the 

revised Cambridge Reference Sequence. a. (Top) Sequence from HVR1 b. (Bottom) 

Sequence from HVRII. 
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HVRI HVRII 

For Individual B, the TapeStation results are shown in Figure 17. All runs that were 

confirmed to be successful were then subjected to sequencing, and snapshots were taken 

(Figure 18). For Individual B, sections of both HVRI and HVRII were isolated, though the 

faint band for HVRI reported by the TapeStation indicated that the PCR was not sufficient.  

In HVRI of Individual B, one partial sequence of 21 bases was obtained (Figure 

19a).  In HVRII, three partial sequences were obtained that when overlapped gave a profile 

of 165 bases (Figure 19b). 

 

 

 

Fig. 17. TapeStation electrophoresis results for Individual B. Lanes 2 and 3 represent PCR 

attempts in HVRI, which did not replicate well. Lanes 4 and 5 represent HVRII, where 

stronger bands have appeared. 
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a)  
 

b)  

 

Fig. 18 a) Snapshot of the mtDNA sequence from the HVR1 obtained from Individual B. 

One partial sequences from this region were able to be extracted. Peaks in gray are failures 

due to errors in peak height or spacing. These peaks can be manually read, despite these 

inconstancies. b) Snapshot of the mtDNA sequence from the HVRII obtained from 

Individual B. Three partial sequences from this region were able to be extracted. 

 

 

 

 

a)  
 

b)  

Fig. 19. Compiled sequences of all DNA fragments from Individual B compared to the 

revised Cambridge Reference Sequence. a. (Left) Sequence from HVR1 b. (Right) Sequence 

from HVRII. 
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For Individual C, the TapeStation results are shown in Figure 20. All runs that were 

confirmed to be successful were sequenced, and snapshots were taken (Figure 21). For 

Individual C, only HVRI was successfully isolated. In HVRI of Individual C, a complete 

sequence of 434 bases was obtained (Figure 22).   

 

 

 

 

 

 

 

Fig. 20. TapeStation electrophoresis results for Individual C. Lanes 2, 3 and 4 represent PCR 

attempts in HVRI, for which lanes 3 and 4 did not replicate well, though a faint band in lane 

4 indicates a 300 base pair product did partially form. 
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Fig. 21. Snapshot of the mtDNA sequence from the HVR1 obtained from Individual C. Two 

partial sequences from this region were able to be extracted. 

 

 

 

Fig. 22. Compiled sequences of all DNA fragments from Individual C compared to the 

revised Cambridge Reference Sequence. Sequence from HVR1. 
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HVRI HVRII 

For tooth MT, the TapeStation results are shown in Figure 23. For lanes 2, 5, 7, and 8 

too much DNA sample was used for PCR, resulting in the large dark bands. All runs that 

were confirmed to be successful were sequenced, and snapshots were taken (Figure 24). For 

tooth MT, complete sequences were isolated for HVRI and HVRII. 

 

 

 

 

Fig. 23. TapeStation electrophoresis results for tooth sample MT. Lanes 2, 3 and 4 represent 

PCR attempts in HVRI. Lane 2 replicated the whole region, while Lanes 3 and 4 were each 

contain overlapping half sequences. Lanes 5, 6, 7 and 8 represent HVRII. Lane 5 represents 

the whole region, Lanes 6 and 7 are half sequences. 
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a)  
 

b)  
 

Fig. 24. a) Snapshot of the mtDNA sequence from the HVR1 obtained from tooth MT. Three 

partial sequences from this region were able to be extracted. b) Snapshot of the mtDNA 

sequence from the HVRII obtained from tooth MT. Three partial sequences from this region 

were able to be extracted. 

 

 

a)  
 

b)  

Fig. 25. Compiled sequences of all DNA fragments from tooth MT compared to the revised 

Cambridge Reference Sequence. a. (Top) Sequence from HVR1 b. (Bottom) Sequence from 

HVRII. 
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For reference, the sequence of researcher JS was obtained from both HVRI and 

HVRII (Figure 26). All sequences were compared to the rCRS, and SNPs were recorded in 

Table 15. Tooth MT had the most SNPs with a total of 8 and was the only sample to record 

SNPs in HVRI. Based on the sequences that were obtained, Individual A and B both reported 

one SNP in HVRII, which was also reported by researcher JS and tooth MT (Table 16). Of 

the observed SNPs, the adenine to guanine change from the rCRS at base 263 was the most 

common. 

Based on the available SNPs, each individual was assessed as Haplogroup H2. 

Haplogroup H2 is most commonly associated with areas of Eastern Europe, including the 

Caucasuses, though it may have originated in Western Europe (60). 

 

 

 

a)  

 

b)  

Fig. 26. a) Snapshot of the mtDNA sequence from the HVR1 obtained from researcher JS b) 

Snapshot of the mtDNA sequence from the HVRII obtained from researcher JS. 
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Table 15. 

Full list of SNPs for each individual, and the assigned haplogroups based on the mutations in 

the mtDNA sequence compared to the rCRS. 

Individual Mutations Top Match to 

PhyloTree in 

HVR1 

Top Match to 

PhyloTree in 

HVRII 

Overall 

Haplogroup 

A 263G H2a2a1 H2a2a H2 

B 263G NA H2a2a H2 

C NA H2a2a1 NA H2 

MT 

16235G 16261T 

16291T 16292T 

152C, 263G, 

(309.1C), 

(315.1C) 

H2a2b1 H2a2a2 H2 

JS  
263G (309.1C) 

(315.1C) 
H2a2a1 H2a2a H2 

 

Table 16. 

Total occurrence of observed SNPs. The lower the occurrence, the rarer the SNP is. 

Frequency data is derived from 42616 GenBank sequences and 69557 Control Region 

sequences (www.mitomap.org). 

Mutation Occurrence Individuals 

16235G 817 MT 

16261T 7589 MT 

16291T 3102 MT 

16292T 2619 MT 

152C 22857 MT 

263G 78186 A, B, MT, JS 

(309.1C) 1258 MT, JS 

(315.1C) 26712 MT, JS 

http://www.mitomap.org/
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3.2.2 Analysis of STR Profiles 

An STR profile was attempted to determine if nuclear DNA was present and 

determine sex. Of the five attempts performed on the DNA isolate from Individual A, two 

resulted in peaks. Figure 27 is an example of one of the electropherograms with readable 

peaks. Multiple alleles were recorded at several loci, indicating multiple sources of DNA. 

The most severe was a reading of locus D3S1358, which reported 11 readable peaks. This 

indicates a minimum of six possible contributors to this DNA. 

A similar observation was made for Individual B. Of the three attempts performed, 

one resulted in readable peaks. This trial reported one locus that had three alleles (Table 18). 

This indicates a minimum number of 2 contributors for this locus. Only allele 14 can be 

contributed to researcher JS, but the second allele reported in the profile of researcher JS, 

allele 12, was not present. 

Tooth MT reported a unique profile, for which no more than two peaks appeared in 

any given locus, shown in Figure 29. This indicates that there was no contamination in the 

DNA isolated from tooth MT, and that there was a high DNA concentration. 

 

Table 17. 

Attempts of STR profiles for each individual. If an electropherogram had one peak read by 

the program, then it was considered to have readable peaks. 

Individual # of Attempts Samples with Readable Peaks 

A 5 2 

B 3 1 

C 5 0 
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Table 18. 

List of alleles observed through all STR profile attempts. Individual A had two 

electropherograms that recorded more than 2 peaks at a locus. Locus D21S11 recorded the 

most peaks in one reading at 11, which indicates that a minimum of 6 individuals had to 

contribute DNA. Italicized numbers represent peaks with RFU values less than 200. 

 JS Individual A Individual B Individual C Tooth MT 

D8S1179 12, 14 8, 9, 10, 11, 

12, 13, 14, 

18 

10, 14, 15 N/A 14 

D21S11 30, 32.2 27, 28, 28.2, 

29, 29.2, 30, 

31, 31.2, 32, 

32.2, 33.2 

OL(27.2), 

32 
N/A 30, 31.2 

D7S820 10, 11 6, 7, 9, 10, 

11 

N/A N/A 9, 11 

CSF1PO 12 12 N/A N/A 11 

D3S1358 14, 18 12, 13, 14, 

15, 16, 17, 

18, 19 

14, 18 N/A 16 

TH01 6, 9.3 6, 8, 9.3, 11 6, 9.3 N/A 6, 9.3 

D13S317 11, 12 10, 11, 13 N/A N/A 12, 14 

D16S539 11 9, 10, 11 N/A N/A 12, 13 

D2S1338 19, 24 16, 19 19, 25 N/A 20, 25 

D19S433 14, 15.2 9, 10, 10.2, 

12, 13, 13.2, 

14, 14.2, 15 

15.2, 17.2 

N/A N/A 15 

vWA 16, 17 13, 16, 17, 

18 

N/A N/A 17, 18 

TPOX 8, 9 6, 7, 8, 10, 

12 

N/A N/A 8 

D18S51 15, 16 9, 15, 16 N/A N/A 14, 15 

Amelogenin X, Y X, Y X, Y N/A X 

D5S818 11, 12 8, 9, 10, 11, 

12, 13, 14, 

15, 16, 17 

N/A N/A 12, 13 

FGA 22, 25 17, 17.2, 18, 

19, 22, 24, 

25, 28, 29, 

30.2, 31.2, 

48.2 

N/A N/A 21, 22 
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3.2.3 Y-STR Analysis 

Since it was confirmed that researcher JS had a Y-chromosome (Table 18), an 

assessment of paternal ancestry was performed to show how the process would have been 

performed on the individuals focused on in this study. A Y-STR profile was generated 

(Figure 30), and for each locus, only one allele is expected to be present, other that locus 

DYS385, which is derived from tandemly duplicated segments of the Y chromosome, thus 

giving rise to two fragments of variable length (61). The total list of observed Y-STR alleles 

(Table 19) was applied to the Y-Chromosome Haplotype Reference Database (YHRD) for 

analysis. 

For the reported Y-STR profile of researched JS, a total of 12 matches were made out 

of 145,816 total profiles, or approximately one match in every 12,151 profiles. Of the twelve 

matches, shown in Figures 31a, three quarters of them report to the British Isles. Six profiles 

reported from Ireland, while the other three matches reported to the United Kingdom. Based 

on known genealogical information, paternal lineage can be traced back to Ireland. 
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Table 19. 

List of Y-STR alleles observed from JS. 

DYS456 16 

DYS3891 14 

DYS390 24 

DYS38911 30 

DYS458 17 

DYS19 14 

DYS385 11, 14 

DYS393 13 

DYS391 11 

DYS439 12 

DYS635 23 

DYS392 13 

YGATAH4 12 

DYS437 15 

DYS438 12 

DYS448 18 
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a)  

 

b)  

Fig. 31 Results obtained from YHRD a) Geographic population analysis of researcher JS. b) 

Ancestry matches based on Y-STR haplotype. 
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IV. Discussion 

4.1 Individual A: 730205-3 

For Individual A, the estimations of age and stature are confident because 

observations and estimations were consistent for both the Suchey-Brooks and Lovejoy 

methods, and the measurements of the long bones were consistent through both trials. For the 

estimation of sex and ancestry, some discrepancies were observed.  

When assessing sex using the Phenice method, Individual A was estimated to be 

probable male. The estimation of sex using Buikstra and Ubelaker’s cranial traits resulted in 

the assessment of probable female, although with the Nuchal Crest and the Supra-Orbital 

Margin each receiving a score of 3 once, these traits are arguably ambiguous. Using the 

current techniques for estimation of sex, Individual A could be classified as ambiguous. Due 

to the narrow scale of this research, a definite assessment of sex for Individual A cannot be 

made. To broaden this research, other pubic traits could be used to estimate sex, such as 

subpubic concavity angle, pelvic inlet shape, and sciatic notch shape and size (6). 

When estimating ancestry, some measurements had to be eliminated from analysis 

due to postmortem alterations and measurement inconsistencies as previously mentioned in 

the methods. The final estimation was that Individual A was a European Female. 

A nearly complete sequence of both variable regions of the control region of 

mitochondrial DNA was obtained for Individual A. HVRII stopped short of the C-stretch, a 

sequence of cytosines running from position 303 through 315. This area commonly exhibits 

SNPs, which was observed for researcher JS. Successful sequencing of this region could 

have proved if these samples were contaminated.  
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The sequences did show an occasional error, mostly attributed to peaks overlapping 

and the appearance of strong cytosine peaks masking smaller neighbor peaks. When 

compared to the PhyloTree program, the haplogroup of H2 was assessed for Individual A. 

Haplogroup H2 is most commonly associated with areas of Eastern Europe. This aligns with 

the estimated ancestry of White Female assessed by FORDISC. 

 

Fig. 32. Side profile of the cranium of Individual C. The cut to allow the removal of the 

calvarium can be observed. 
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 The final step was to attempt an STR profile to determine sex. Of the five 

attempts, two resulted in readable peaks. Multiple alleles were recorded at several loci, 

indicating multiple sources of DNA. This appears to confirm that the samples were 

contaminated. The most severe was a reading of locus D3S1358, which reported 11 readable 

peaks. This indicates a minimum of six possible contributors to this DNA. All observed 

peaks from the STR profile were below 400 RFUs. These low RFU values, combined with 

the three other runs that all had no recorded peaks, indicates that the tooth samples had no 

nuclear DNA available for analysis, and that the two runs that did report peaks were 

contaminated. Thus, any attempts to draw conclusions about sex from the Amelogenin results 

is confounded by the presence of multiple individuals, making the most likely analytical 

outcome for Amelogenin to be X,Y. 

. 
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4.2 Individual B:730205-6 

For Individual B, the estimations of sex and stature were consistent for both the 

Phenice pubic and the Buikstra/Ubelaker cranial methods. Additionally, the measurements of 

the long bones were consistent through both trials. It was for the estimations of age and 

ancestry that some discrepancies were observed.  

When assessing age, the Suchey-Brooks method of analyzing the pubic symphysis 

was consistent between both trials. Based on the recorded observations, a mean age of 35 

was determined. It was in the Lovejoy method that data discrepancies appeared. The two 

trials performed resulted in different phases reported, with Trial 1 reporting Phase 4 for a 

minimum age of 35, while Trial 2 reported Phase 5 for a minimum age of 40. Compiling the 

two methods together, a minimum age of 30 years can be reliably estimated. 

When estimating ancestry, again some measurements had to be eliminated from 

analysis due to each individual having their calvarium removed. Otherwise, no measurements 

fell outside of 3 mm of difference between trials for Individual B, so all measurements were 

used for analysis by FORDISC. The final estimation was that Individual B was a European 

Male. 

A nearly complete sequence for HVRII regions was obtained for Individual B, while 

only one 21-base segment was obtained for HVRI. The HVRII sequence again stopped short 

of the C-stretch. Without this sequence, it cannot be conclusively proven that samples were 

contaminated by JS. The sequences did show an occasional error, mostly attributed to peaks 

overlapping. When compared to the PhyloTree program, the haplogroup of H2 was assessed 
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for Individual B. This aligns with the estimation of ancestry of a White Male obtained using 

FORDISC. 

Finally, an STR profile was attempted to determine sex. Of the three attempts, only 

one resulted in peaks. As was observed in the attempts for Individual A, the successful 

attempt for Individual B resulted in multiple alleles at loci D8S1179 and D21S11, indicating 

multiple sources of DNA. In this case, the most recorded was three alleles at locus D8S1179. 

Also, as with Individual A, all observed peaks were below 400 RFUs. These low RFU 

values, combined with the three other runs that all had no recorded peaks, indicates that the 

tooth samples had almost no nuclear DNA available for analysis. 
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4.3 Individual C: 8339 

For Individual C, the estimations of sex and age are confident. Observations and 

estimations were consistent for both the Phenice pubic and the Buikstra/Ubelaker cranial 

methods, along with the observations recorded for the Phenice and Lovejoy techniques. For 

Individual C, the estimated age had a mean of 30 years, making this individual younger than 

the other two. For the estimation of stature and ancestry that some discrepancies were 

observed.  

For the estimation of stature, two sets of equations were required because of the 

limitations of the selected method. The East Asian Males equations resulted in a smaller 

possible range, which completely fell within the range created using the White Female 

equation set. 

When estimating ancestry, the final estimation was that Individual C was a Japanese 

Female, with a total correct assessment of 66.9%. This is the only variant result for ancestral 

estimation using FORDISC, as the other two individuals were estimated as European 

individuals. Comparing the recorded cranial measurements, those with the biggest difference 

when compared to Individuals A and B include the Nasal Breadth, Basion-Prosthion Length, 

and the Frontal Chord. Most prominent is the Nasal Breadth, which is closer in measurement 

to the measurements of Individual B, estimated as a male, than when compared to Individual 

A, estimated as a female. 

 A nearly complete sequence for the HVRI was obtained for Individual C, however 

no sequences were obtained for HVRII. No mutations were observed in HVRI, which was 

also observed in the sequence obtained from researcher JS. When compared to the PhyloTree 
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program, the haplogroup of H2 was assessed for Individual C. Since Haplogroup H2 is 

associated with Eastern Europe and the Caucasus mountains, this does not match with the 

ancestry estimation obtained using FORDISC. An alignment between FORDISC and DNA 

commonly occurs, but a difference between the estimations can occur due to FORDISC 

relying on physical traits. This research indicates that Individual C had a maternal lineage 

that is European in descent. 

Finally, an STR profile was attempted to determine sex. Of the three attempts, none 

of the profiles resulted in peaks at Amelogenin, the sex marker for STR analysis. This 

indicates that there was no nuclear DNA available for analysis, along with indicating that 

there was no contaminant DNA that was detected by the genetic analyzer. 
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4.4 Summation of Observations from Individual A, B, and C 

An estimation of ancestry, sex, age, and stature was successfully obtained for each 

individual. However, some inconsistencies did appear throughout the experiment. For 

Individual A, the estimation of sex was ambiguous because one method resulted in an 

assessment of male, the other female. An increase in scope by using further methods could 

remedy these inconsistencies. The estimation of age could also have been extended. For 

example, another popular method for estimating age-at-death is through the use of the sternal 

rib end (2). The methods selected were chosen due to what skeletal material was available, 

forcing a somewhat limited scope. 

It was also apparent that the DNA analysis was limited. The analysis of nuclear DNA 

through STR profiling repeatedly showed that there was no nuclear DNA present. Any locus 

that had readable peaks had to be taken into scrutiny because in these cases the majority of 

loci had a large number of allele peaks, indicating DNA contamination. These readable peaks 

all had very low RFU values, which occurred because the lower limit of the genetic analyzer 

was dropped. This was done with the expectation that there would be trace amounts of 

available DNA. 

For each individual, mitochondrial DNA sequences were obtained. The majority of 

these sequences were highly fragmentary and had to be overlapped in order to develop a full 

sequence. Because of this, a complete sequence of HVRI and HVRII were not obtained for 

any of the Individuals A, B, or C, so the possibility that all mutations were not detected 

exists. 
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All sequences were compared to the rCRS for SNPs. Most sites use the rCRS as the 

reference for comparison when assessing ancestry. The purpose of having a mitochondrial 

DNA reference sequence is to communicate the variation of a lineage in a compact form by 

listing only the variants of a new lineage relative to the selected reference sequence. The 

original reference sequence was taken from a European woman in the 1970’s (35). A 

sequence with no deviations from the rCRS, which repeatedly occurred within HVRI, would 

indicate that the individuals would be from Haplogroup H. 

Among the mtDNA haplogroups of Europe, Haplogroup H displays two unique 

features: an extremely wide geographic distribution and a very high frequency in most of its 

range. It is by far the most prevalent haplogroup in most European populations, is very 

common in North Africa and the Middle East, and retains frequencies of 5%–10% even in 

northern India and Central Asia, at the edges of its distribution range (62). 

Another issue with the mtDNA sequences is that they are identical to the sequence 

developed from the DNA isolate taken from researcher JS. It was expected that there would 

be at least one mutational difference within the variable regions between two different 

individuals. This is further an indication that DNA contamination may have occurred. 
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4.5 Issues with DNA Isolation and Contamination 

One of the confirmatory tests run was the use of the Qubit 2.0 Fluorometer to 

determine the approximate concentration of nuclear DNA obtained from each DNA isolation 

attempt. The Qubit does not differentiate between human and nonhuman double stranded 

DNA. This could result in an inflated final concentration reading. 

Another issue observed occurred when isolating DNA from tooth MT. Although no 

increase in concentration was observed when using the Qubit fluorometer, the 

electropherograms developed using the TapeStation show that there was a lot more DNA 

isolated from tooth MT than the other tooth samples. This indicates that the Qubit was not 

detecting the available DNA, bringing into question the isolated DNA from the skeletal 

material, along with the incubation temperature test conducted using sample from tooth MT. 

To combat the risk of DNA contamination, all extracted teeth and any equipment 

were cleaned. The teeth were cleaned using an absolute ethanol/detergent mixture. This 

differs from most procedures, which use a 70% ethanol/detergent mixture for cleaning 

purposes. The increased water dissolves more of the detergent powder to use for cleaning, 

and also aids in the removal of protein contaminants. Absolute ethanol coagulates proteins, 

reducing the effectiveness of the wash. This change in the method could have allowed for 

some contaminant DNA to remain, or protein interference to have occurred. 

Negative controls were run throughout the experiment to assess for possible DNA 

contamination. All controls reported negative results except for one run. When this failure 

occurred, all solutions and samples that had been run with the negative control were 
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discarded, remade, and were run again. The next run reported all controls as negative, and the 

experiment continued as protocols dictated. 

As was previously discussed, the results indicate the possibility of DNA 

contamination. The sequencing results for all three individuals are identical to the sequence 

obtained for researcher JS. In a typical sequence of non-relatives, there should be some 

differences. This suggests that the DNA that was sequenced from the three individuals could 

have been from researcher JS. However, the incomplete, fragmented nature of the sequences 

leaves open the possibility that the sequences come from unique DNA. 

For Individuals A, B, and C, STR analysis can be considered a failure. Of the thirteen 

attempts at developing an STR profile, only 3 resulted in readable peaks. Each of these 

electropherograms show loci with multiple peaks, indicative of nuclear DNA contamination. 

The other electropherograms report no peaks, indicating that those samples had no nuclear 

DNA at all. Table 18 lists all the observed alleles from the compiled electropherograms. 

Many of the peaks observed from Individual A and B match reported peaks for research JS, 

indicating possible contamination. 
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4.6 The Destruction of DNA, and PCR Inhibitors 

DNA has a limited chemical stability due to chemical processes such as hydrolysis, 

oxidation, and non-enzymatic methylation of DNA, which are counteracted by specific DNA 

repair processes (63). This decay of DNA limits the amount of DNA that can be recovered 

from long deceased individuals, and the DNA that is recovered is often fragmented, not 

allowing for complete analysis, something observed in the project. 

 To help alleviate the problems associated with analyzing DNA from degraded 

samples, researchers have developed shorter DNA primers that allow for DNA analysis of 

smaller fragments. For example, a new set of STR primers known as Miniplexes have been 

recently designed. The primers were created by moving the primer binding sites as close as 

possible to the repeat region (64). If degraded DNA was the biggest problem facing this 

project, new DNA primers is a promising route to follow to improve results. 

Suboptimal reaction conditions also may arise for a number of reasons. Primarily 

inappropriate primers, improper time or temperature conditions, variable polymerase quality, 

and incorrect Mg2+ concentration (65). Although enamel was avoided when grinding tooth 

samples, the low concentration of DNA combined with the mineral state of enamel could 

deplete or alter the chemical isolation of DNA. Another issue possibly plaguing this research 

was DNA inhibition. 

Inhibition is problematic in the application of PCR, particularly those involving 

degraded or low amounts of template DNA. Inhibitors commonly co-extracted with ancient 

DNA from teeth, bones, and mummified tissue include: humic acids, fulvic acids, tannins, 

porphyrin products, phenolic compounds, hematin, and collagen type I (66).  
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Given the importance of removing PCR inhibitors from DNA extracts, a number of 

techniques have been developed to eliminate this problem. The most common of these 

methods are designed to eliminate PCR inhibitors, including the use of silica extraction plates 

and performing dilution series (66). Though our experiment was designed around using 

silica-plate extractions, it is reasonable that a combination of degradation, DNA destruction, 

and the presence of PCR inhibitors could be responsible for the low STR yields. 
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4.7 Effect of Maceration on DNA 

Maceration is a bone preparation technique whereby a clean skeleton is obtained from 

the body of a deceased individual. Interest in maceration techniques began in the 19th century 

and have developed over the centuries. Maceration is an invaluable procedure in a forensic 

anthropological context. However, many of the common maceration techniques result in 

damaged or unusable DNA for genetic analysis (67,68). It has been observed that bone 

treatment with bleach, EDTA, or detergent/sodium carbonate and degreasing solutions, 

common techniques in maceration, results in low/no yield for nuclear PCR products (67). 

This is consistent with the skeletal samples in this study. If the skeletons of the individuals 

were purchased from a company, cleaning methods that are fast and inexpensive and result in 

the cleanest product would likely be used. Chemical treatments such as bleach and EDTA 

meet all these qualities (68). However, it has been observed that mtDNA amplification was 

successful even for cases in which no nuclear DNA was detected suggesting that sufficient 

mtDNA was extracted to generate products following PCR amplification (67). 
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4.8 Isolation of Tooth MT 

To test whether the protocol developed could successfully isolate DNA from tooth 

material, sample tooth MT was subjected to analysis. DNA was successfully isolated in all 

three trials and was submitted for sequencing and STR analysis. 

  Complete sequences were obtained for both HVRI and HVRII. When compared to 

the rCRS, a total of eight SNPs were observed, whereas the sequences obtained from 

researcher JS only had three SNPs. This shows that unique mtDNA sequences were obtained 

from tooth MT, which indicates that the developed protocols were successful for 

mitochondrial DNA isolation and analysis. Ancestral analysis was performed, showing that 

tooth MT came from an individual of haplogroup H2.  

 Nuclear DNA was assessed by STR profile. The resulting electropherogram had a 

maximum of two allele peaks at any given locus, consistent with one contributor. The 

majority of the resulting peaks were unique and did not match the peaks recorded from the 

profile obtained for researcher JS. The factors combined indicate that there was no nuclear 

DNA contamination, and that the DNA isolated was unique to the tooth sample. 

Unfortunately, tooth MT was from a female, so Y-STR analysis could not be performed. 
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4.9 Application of Paternal Ancestry 

Since there was no nuclear DNA recovered from the tooth samples of the three 

individuals, paternal ancestry could not be performed. The paternal ancestry of researcher JS 

was performed for reference. The alleles recorded from the Y-STR electropherogram for 

researcher JS were used for analysis using the Y-Chromosome Haplotype Research 

Database. 

YHRD compares the provided Y-STR profile to profiles submitted around the world 

from other DNA databases. Based on the total set of profiles, any matches are recorded and 

reported. Of the 12 total matches, half match profiles of individuals with paternal ancestry in 

Ireland, while another quarter of the matches report paternal ancestry from the United 

Kingdom. This matches the known information of paternal ancestry of researcher JS, who 

reports ancestry originating from Ireland. 
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V. Concluding Remarks 

For this research, the assessment of common techniques for the development of a 

biological profile was performed, along with the ability to extract usable DNA for ancestral 

research from the teeth. This research showed that the techniques used for assessment of a 

biological profile can be erroneous, in the case of the estimation of biological sex for 

Individual A, or need to be expanded upon, as in the case of the estimation of stature for 

Individual C. 

For the estimation of biological sex, results could be reinforced by DNA analysis. 

This thesis tested the ability to extract DNA from tooth samples from the three Individuals. 

Use of a silica plate spin column resulted in a reasonably simple and replicable process. 

Issues with the presented research include a small sample size, which required multiple 

extraction attempts, using up much of the tooth sample.  

This thesis attempted to develop both a sequence of the HVRI and HVRII of the 

human mitochondria DNA from the tooth samples, along with attempting to perform STR 

analysis for assessment of sex, and Y-STR analysis when appropriate for analysis of paternal 

ancestry. Based on the samples provided, it was observed that nuclear DNA is much more 

difficult to successfully type than mitochondrial DNA. Various factors could have led to this, 

including the presence of DNA inhibitors or the occurrence of maceration, most likely by 

chemical methods. There are also more copies of mitochondrial DNA available for analysis 

than nuclear DNA, so it is expected that more mtDNA would survive degradation. In samples 

that are naturally preserved, the protocols used resulted in successful DNA isolation. 

Maceration can be tested for by looking for chemical signatures in bone or teeth. Elemental 
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analysis could be performed on the samples, using instruments such as a scanning electron 

microscope. 

All individuals analyzed in this thesis resulted in a mitochondrial haplogroup of H2, 

which is most commonly found in areas of Eastern Europe. This included tooth MT, which 

had the most SNPs of the DNA samples analyzed. Due to the overall fractured nature of the 

DNA samples processed of Individuals A, B, and C, the extracted mtDNA samples could still 

be pure. However, due to the environment not being a clean lab, all trace DNA analysis must 

be taken under scrutiny. 

 Further research would include an assessment on how different maceration techniques 

effect extraction of DNA, especially for teeth. Much of the current research focuses on the 

assessment of DNA isolation from long bones. It was also observed that there were some 

discrepancies between reports from different researchers. Some researchers report that 

chemical treatments degrade DNA more rapidly, while others report that temperature 

treatments have a greater degrading effect on DNA. 

 The process followed in this thesis for genetic ancestral analysis was small-scale. 

This research focused on the control region of mitochondrial DNA and Y-STR profiling. 

Though most research into using mtDNA for ancestry determination looks solely into the 

control region, expanding research has found ancestral-dependent SNPs throughout the 

mitochondrial sequence. The provided research can be expanded by sequencing these 

additional regions to compare the DNA extracted from the individuals to that of researcher 

JS. 
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 This is also true for assessment of paternal ancestry through the Y-chromosome. 

Research is increasingly using SNPs in regions found in the Y-chromosome. A next step for 

this research would be to investigate and develop protocols for sequencing these areas of 

DNA. 

Overall, the individuals were assessed as two European males and one Asian female, 

all middle aged. This info would be valuable to the Anthropology department at SUNY 

Buffalo State in their future work with these skeletal remains. 
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Appendix 

 

Fig. 33. Full body layout of Individual C for reference of the position of bones. 
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Fig. 34. Image of the skull with mandible of Individual A. 
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Fig. 35. Image of the skull with mandible of Individual B. 
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Fig. 36. Image of the skull with mandible of Individual C. 
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Figure 37. Mitochondrial DNA Map highlighting the hypervariable regions and the 

approximate locations/directions of primers. 
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