
State University of New York College at Buffalo - Buffalo State University State University of New York College at Buffalo - Buffalo State University 

Digital Commons at Buffalo State Digital Commons at Buffalo State 

Forensic Science Theses Chemistry Department 

5-2018 

Evaluation of the Biocompatibility and Micromechanical Evaluation of the Biocompatibility and Micromechanical 

Properties of Experimental Dental Adhesives Properties of Experimental Dental Adhesives 

Hoda Moussa 
moussaha01@mail.buffalostate.edu 

Advisor Advisor 

Camila Sabatini, D.D.S, M.S. 

First Reader First Reader 

Camila Sabatini, D.D.S, M.S. 

Second Reader Second Reader 

Jooneyang Kim, Ph.D. 

Third Reader Third Reader 

M. Scott Goodman, Ph.D. 

Department Chair Department Chair 

M. Scott Goodman, Ph.D., Professor of Chemistry 

To learn more about the Chemistry Department and its educational programs, research, and 

resources, go to http://chemistry.buffalostate.edu/. 

Recommended Citation Recommended Citation 
Moussa, Hoda, "Evaluation of the Biocompatibility and Micromechanical Properties of Experimental 
Dental Adhesives" (2018). Forensic Science Theses. 13. 
https://digitalcommons.buffalostate.edu/forensic_science_theses/13 

Follow this and additional works at: https://digitalcommons.buffalostate.edu/forensic_science_theses 

 Part of the Dental Materials Commons, and the Materials Chemistry Commons 

https://digitalcommons.buffalostate.edu/
https://digitalcommons.buffalostate.edu/forensic_science_theses
https://digitalcommons.buffalostate.edu/chemistry
http://chemistry.buffalostate.edu/
https://digitalcommons.buffalostate.edu/forensic_science_theses?utm_source=digitalcommons.buffalostate.edu%2Fforensic_science_theses%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/654?utm_source=digitalcommons.buffalostate.edu%2Fforensic_science_theses%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/135?utm_source=digitalcommons.buffalostate.edu%2Fforensic_science_theses%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages


i 
 

 

Evaluation of the Biocompatibility and Micromechanical Properties of Experimental 

Dental Adhesives 

 

by 

 

Hoda Moussa 

 

 

An Abstract of a Thesis  

in 

 Forensic Science 

 

 

Submitted in Partial Fulfillment  

of the Requirements  

for the Degree of  

 

 

Master of Science 

 

 May 2018 

 

 

 

State University of New York  

College at Buffalo 

Department of Chemistry 

 

 

 

 

 

 

 

 



ii 

ABSTRACT 

 

The purpose of this study was to investigate the biocompatibility and micromechanical 

properties of newly synthesized antibacterial monomer and cross-linker functional surfactants 

into a commercially available dental adhesive (Single Bond, 3M ESPE, Saint Paul, MN, USA) at 

three concentrations (0.05, 0.1, 0.25 mg/mg). All groups were analyzed by evaluation of micro-

tensile bond strength, ultimate tensile strength, cell viability, antibacterial properties, and surface 

micro-hardness. Scanning electron microscopy (SEM) was used for interfacial characterization.  

Human extracted molars were used as a substrate for bonding adhesives for the micro-

tensile bond strength (MTBS) and scanning electron microscopy (SEM) studies. Twenty resin-

dentin beams (0.9 ± 0.1 mm2) per group were evaluated at 24 hrs and 6 mos for MTBS. Slabs of 

~1 mm were analyzed in the SEM for surface characterization. For the ultimate tensile strength 

(UTS), ten hour-glass shaped specimens (10 × 2 × 1mm) per group were tested at 24 hrs, 1 wk, 

and 6 mos. To evaluate toxicity, four disc-shaped specimens (5 × 2 mm) per group were 

incubated with human gingival fibroblasts (HGF). Antibacterial properties were evaluated by 

incubating three disc-shaped specimens (8 × 1 mm) per group with a strain of caries-producing 

bacteria S. mutans. 

Within the limitations of this in vitro study, it was concluded that incorporation of 

antibacterial monomer and cross-linker additives may be a viable option to help increase the 

longevity of tooth-colored adhesive restorations. Single Bond adhesive modified with 0.1 mg/mg 

monomer appears to provide the optimal balance for biocompatibility and micromechanical 

properties. 
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CHAPTER 1 

INTRODUCTION AND BACKGROUND 

 

1.1. STATEMENT OF THE PROBLEM  

Dental caries is a pandemic affecting millions of people. According to the Centers for 

Disease Control and Prevention, it was reported that in 2015, 91% of Americans over the age of 

twenty have had dental caries at some point and 27% of adults over twenty had untreated caries 

[1]. Patients who have suffered from caries and have had restoration, face the potential 

consequence of dental restoration failure overtime and/or the risk of developing secondary 

caries.   

Dental restorations can fail due to several factors that continue to be explored in dental 

research. The longevity of tooth-colored restorations remains an issue as they are known to fail 

due to the potential formation of recurrent or secondary caries under the existing restoration [2]. 

Secondary caries can occur due to several reasons including poor oral hygiene, which leads to 

plaque formation, micro-leakage and others [3]. Micro-leakage around the restoration margins 

provides an open pathway for acid-producing bacteria, which then begins the gradual dissolution 

of tooth substrates once the pH of the micro-environment drops under a certain level leading to 

the formation of secondary caries [4].   

In a study by Gordan, et al. [5], the authors concluded that if an original restoration had 

been repaired or replaced within the first year of treatment, an additional treatment was most 

likely needed. To overcome the issues of restoration failure, the dental adhesive would ideally be 

antibacterial as well as offer long-term strong bonding to tooth structure. A study by Hiraishi, et 

al. demonstrated that incorporation of 1% chlorhexidine (CHX) exhibited significant 

antibacterial activity without compromising the bond strength to dentin [6]. The incorporation of 
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the antibacterial monomer 12-methacryloyloxydodecylpyridinium bromide (MDPB) to a dental 

adhesive showed a stable bond strength to dentin after one year, and greater antibacterial activity 

as compared to other antibacterial agents such as CHX [7].   

The present thesis intends to evaluate an experimental antibacterial monomer and cross-

linker functional surfactant, incorporated into a resin adhesive, for their antibacterial properties. 

Their biocompatibility and effect on micromechanical properties of the adhesive including 

micro-tensile bond strength, ultimate tensile strength and surface micro-hardness will also be 

investigated. Nine study groups were evaluated by incorporation of an antibacterial monomer 

and cross-linker to a commercially available adhesive Singe Bond (3M ESPE, Saint Paul, MN, 

USA). Eight groups incorporated chemically modified monomers, cross-linkers, or a 

combination of both. Single Bond alone was used as a control. The following sections of this 

thesis will address background information on dental caries, basic mechanisms of adhesion, 

dental adhesive systems, and the laboratory techniques commonly used to evaluate adhesive 

blends for their antibacterial properties, biological response, and mechanical properties. Later, 

the different test methods used in this project as well as the results are presented; which are then 

followed by a discussion section intended to interpret the observed results, address the 

limitations of the present study, while also providing directions for future research. The 

following testing methods will be discussed: antibacterial assay, cytotoxicity, micro-tensile bond 

strength, ultimate tensile bond strength, and microstructure characterization by field-emission 

scanning electron microscopy.  

1.2. DENTAL CARIES  

Dental caries is an irreversible microbial disease, affecting millions of people, which 

results from the dissolution of the inorganic component of the tooth, enamel and dentin [8]. 
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Fortunately, it is a treatable disease. However, once treated, restoration failure is a common 

issue, which then compromises adhesive longevity [9]. Inadequate salivary flow, poor oral 

hygiene, and insufficient fluoride exposure are some of the factors known to contribute to the 

development and progression of caries [10].  

Caries can be classified as primary and secondary. Primary caries is the initial attack of 

the tooth substrates. This occurs when fermentable carbohydrates are processed by host bacteria 

normally present in the dental biofilm leading to the production of lactic acid, which in turn 

dissolves the inorganic component of the tooth [11]. Conversely, secondary caries form around 

and under existing dental restorations [12]. The formation of secondary caries suggests that the 

seal at the composite–dentin interface cannot withstand the physical, chemical, and mechanical 

stresses present in the oral cavity [2].  

Secondary caries start by a phenomenon known as micro-leakage, as mentioned briefly in 

section 1.1. Micro-leakage is defined as the “diffusion of the bacteria, oral fluids, ions and 

molecules into the tooth and the filling material interface” and as the “clinically undetectable 

passage of bacteria, fluids, molecules or ions between tooth and the restorative or filling 

material” [13].  

Our oral cavity is home to the bacteria known as Streptococcus mutans (S. mutans), 

gram-positive bacteria that constitute biofilms on the surface of teeth. These anaerobic organisms 

produce high levels of lactic acid and are resistant to the effects of low pH, properties which 

encourage further propagation of the caries disease [8]. S. mutans is known as the main 

etiological factor in the development of dental caries [14]. One of the main areas of dental 

materials research has focused on the evaluation of the effects of different antibacterial agents 

incorporated into dental adhesives. Zhang, et al. [15] reported that dimethylaminododecyl 
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methacrylate (DMADDM) adhesives slowed the pH drop and decreased the lactic acid 

production of S. mutans with a 10-30 fold difference compared to the control group.    

In recent years, a profound paradigm shift in the treatment of caries has been observed 

from a traditional model to a medical approach [16]. Whereas the traditional caries model was 

focused on the treatment of the actual cavitation present in teeth (i.e. consequence of the 

disease), the contemporary medical model revolves around prevention of the disease through a 

thorough understanding of the factors contributing to its development.  

1.3. RESIN-BASED COMPOSITE RESTORATIVE MATERIALS 

With the development and more recent improvements in the properties of tooth-colored 

restorative materials of the last few decades, patients’ treatment preferences have shifted from 

silver amalgams to tooth-colored resin based composite materials [17]. Both dentists and patients 

alike opt for resin-based composite restorative materials for a number of reasons including 

conservativeness and aesthetics. By definition, a composite is a material made of two or more 

materials, which are different in chemical composition and physical properties, and when 

combined are able to produce a material with greater overall properties [18]. Resin-based 

composites combine an organic matrix and an inorganic component and can be used for a 

number of applications including anterior and posterior restorations, pits and fissure sealants, for 

the bonding of ceramic veneer and other types of fixed prosthesis.  

1.3.1. Composition 

Resin-based composites consist of four major components: organic matrix, inorganic 

filler particles, coupling agent and an initiator-activator system. Each component is essential to 

the overall structure and function of these materials.  
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The organic matrix, the phase to which all other components are added, is typically a 

combination of high and low molecular weight monomers including Bis-GMA (bisphenol-A 

glyceril methacrylate), UDMA (urethane dimethacrylate), TEGDMA (triethylene glycol 

dimethacrylate) and hydroxyethyl methacrylate (HEMA). Functional monomers serve several 

purposes including the etching for demineralization and infiltration of the dental hard tissues, 

fluoride release and antibacterial effects among others. Commercial adhesives typically include 

carboxylic acid-based monomer and phosphate-based monomer functional groups [19]. 

Universal dental adhesives such as Single Bond (3M ESPE), used for the present thesis, contains 

Bis-GMA, HEMA, 10-methacryloyloxydecyl dihydrogen phosphate (MDP), and other 

undisclosed monomers.  A study by Asmussen and Peutzfeldt (1998) demonstrated that 

variations of the BisGMA/TEGDMA/UEDMA ratio greatly affected the mechanical properties 

of the composite, suggesting that specific combinations should be developed based on the 

specific applications of the material [20]. Regardless of the ratio, because of its organic 

composition, the resin matrix is the weakest phase.  

The inorganic filler particles are generally silica particles, quartz, and glass. The role of 

fillers is to provide strength to the composite while also improving their overall properties, 

decrease the amount of the matrix material and consequently the water sorption, coefficient of 

thermal expansion and polymerization shrinkage. Polymerization shrinkage occurs when 

monomer molecules are converted into a polymer network, by the number of covalent bonds 

formed. This phenomenon is unfavorable because of the resultant poor marginal seal that 

eventually leads to the formation of secondary caries [21].  

Resin-based composite restoratives can be classified based on the amount and size of the 

filler particles. Currently, the two main types are hybrid and micro-fill resins, as depicted in 
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Figure 1. Hybrid resins are typically a blend of macro-filler particles and micro-fine silica 

particles. Hybrid resins are regarded as superior in mechanical properties; the increased filler 

loading enhances the stress transfer between particles in the composite [22]. Hybrid composites 

have reduced polymerization shrinkage compared to other resin based composite materials due to 

a reduced matrix content.  

Micro-filled composites contain micro-fine filler particles of silica (SiO2)  [23]. Because 

of their lower filler content, micro-filled composites have weaker physical properties compared 

to hybrid composites [23]. Generally, they have greater polymerization shrinkage and water 

sorption than hybrids. In terms of the marginal integrity, color, and marginal discoloration, 

hybrid composites generally perform better [24].  

The filler particles can be incorporated into the resin matrix by heterogeneous or 

homogeneous methods. The homogeneous method means that the micro-filler is added directly 

to the resin. The heterogeneous method requires compression of the micro-filler first and then 

addition of the fumed silica to a heated resin [25].  

A coupling agent, silica, is responsible for providing adequate interfacial adaptation 

between the resin matrix and the filler particles [26] (Figure 2). It prevents the leaching of the 

filler particles by preventing water from penetrating along the resin-filler interface [27]. 

Coupling agents can be chemically bonded by filler-particle resin matrix, which transfers stresses 

or by a bi-functional organosilane molecule [26]. The latter, siloxane end bonds to hydroxyl 

groups on the filler and the methacrylate end polymerized with the resin [26]. 

 Dental restorations are fixed onto the tooth’s surface by polymerization via a light curing 

unit. Photo-polymerization allows for the dissociation of initiator molecules into free radicals. 

The radical chain polymerization reaction is initiated by the camphorquinone-amine complexes 
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[28]. The reaction is activated by these complexes with a light curing unit, at a wavelength 

within a range of 400-500nm and a given intensity [29]. This results in a reaction with double 

bonds in the monomers or pre-polymers which break into single bonds and provide links 

between the monomers to cross-link into a polymeric network [29, 30].  

 

 

Figure 1. Hybrid (left) and micro-filled (right) resin-based composites.  
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Figure 2. Bonding of fillers to resin matrix. The coupling agent provides interfacial adaptation 

between the matrix and filler particle. 

 

 

1.4. MECHANISMS OF ADHESION 

1.4.1. Micro-mechanical via hybrid layer formation 

The bonding mechanism of adhesives can be compared to an exchange system that 

allows for the substitution of inorganic tooth material by resin monomers [31]. A result of the 

process of micro-mechanical interlocking is the formation of a hybrid layer [32]. After removal 

of the smear layer and inorganic content by acid etchants or self-etching primers, subsequent 

infiltration of the partially demineralized tooth substrates with resin monomers yields the so-

called hybrid zone (Figure 3). This layer consists of partially demineralized collagen, resin 

monomers, residual solvents and water. 

Because the collagen network that is exposed after etching remains embedded in the 

hybrid layer, the layer is particularly susceptible to the effects of hydrolytic degradation [33]. 

The properties of the hybrid layer determine largely the overall quality and long-term integrity of 
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these restorations. Resin-enamel bonds are typically very stable and durable [34]; however, 

resin-dentin bonds can be unpredictable because of the substrate’s variability for bonding [35].  

1.4.2. Chemical adhesion 

Adhesion through molecular interactions between the adhesive and substrate surface is 

known as chemical adhesion. A strong chemical adhesion bond results when an adsorbed 

molecule dissociates on contact with a surface and the atoms rearrange themselves to form 

covalent or ionic bonds [36]. Ionic bonds known to form between the carboxyl groups of the 

glass polyalkenoate cements and calcium ions in enamel and dentin is an example of chemical 

adhesion to tooth structure [37]. 

 

 

Figure 3. Schematic of dentin bonding, demonstrating the hybrid layer. 

 

1.5. DENTAL ADHESIVE SYSTEMS  

1.5.1. Composition  

 Resin based dental adhesives are unfilled or lightly filled resins. The same components as 

those described in the previous section for resin-based composites are present, an organic matrix, 
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a coupling agent (silane) and an initiating-activating system. The inorganic filler loading is either 

minimal, making the mixture less viscous, or non-existing.  

 1.5.2. Classification 

Dental adhesive systems can be classified by generation, clinical application steps, and 

underlying adhesion strategy. These classifications are based on the three main steps involved in 

achieving micro-mechanical retention to tooth structure, etching, primer and adhesive. Acid 

etching involves the use of 35-40% phosphoric acid to remove the smear layer, a layer of 

inorganic debris that remains on the surface of the dentin after tooth preparation, and other 

inorganic phase from the tooth substrates opening the dentinal tubules for subsequent infiltration 

by resin monomer [38]. This rough layer provides greater surface area for bonding [39]. 

In 1955, Buonocore, pioneer of adhesive dentistry, spoke for the first time about the 

benefits of acid-etching [40]. After acid etching, the partially demineralized tooth structure is 

infiltrated with primers. Primers are hydrophilic monomers as hydroxyethylmethacrylate 

(HEMA) and solvent carriers as ethanol, acetone or water and their primary function is to raise 

collagen’s surface energy facilitating subsequent infiltration with hydrophobic adhesive [41]. In 

other words, the primer allows for better adhesion by re-wetting the partially demineralized 

collagen fibers and preventing it from collapsing. The wetting process is critical to achieving 

molecular attraction. Last, the collagen network is infiltrated with a hydrophobic adhesive resin, 

which is then polymerized in situ providing bonding to the overlaying resin based composite 

restorative material. To achieve optimal wettability of the primed surface, the adhesive must 

display a low contact angle on dentin [41]. 
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1.5.2.1. By generation   

 Classification by generation includes the first to the eighth generation. This is an older 

system which was used to signify the changes made by each generation in the products being put 

on the market. Generations four through seven are the bonding systems still used today in 

clinical dental practice [40].  

The first generation bonding agents were designed for ionic bonding to hydroxyapatite or 

for covalent bonding (hydrogen bonding) to collagen [42]. The issue with this adhesive system, 

was its reduction in bonding after its immersion in water [40]. To overcome this issue, Bowen 

[43] used a coupling agent, N-phenylglycine and glycidyl methacrylate, or NPG-GMA. 

Nonetheless, the first generation bond strength was still relatively weak, producing bond 

strengths in the range of only 1-3 MPa [43]. The second generation incorporated polymerizable 

phosphates, which were added to Bis-GMA resins, but the low bond strength was still an issue 

[44]. The first and second generations did not remove the smear layer, resulting then in weak 

bond strengths. The third generation presented a significant improvement by partially removing, 

for the first time, the smear layer by acid etching and opening up the dentinal tubules [45]. 

However, the bond strength was still relatively weak because the unfilled resins did not penetrate 

the smear layer effectively [46]. 

The complete removal of the smear layer was achieved by the fourth generation [47]. 

This was accomplished by applying the etchant, primer, and bonding separately. The fourth 

generation accomplished a far greater bond strength, reaching about 20 MPa, as compared to the 

earlier generation systems [40]. This thus became the gold standard. The only downside to this 

generation was the multi-step process involving many bottles. The goal then became combining 

the multiple step process into fewer steps without a compromise to the bond strength. There was 
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a simplified process following in the fifth to eighth generations by combining some steps such as 

the primer and adhesive bonding [48].  

1.5.2.2. By clinical application steps 

Clinical application steps refer to whether adhesive systems are applied in one, two or 

three steps. The number of clinical application steps vary depending on the adhesion strategy as 

per description below.  Etch-and rinse systems can be applied either in two or three steps, 

whereas self-etch systems can be applied in one or two steps.  

1.5.2.3. By underlying adhesion strategy 

“Etch-and-rinse” and “self-etch” are bonding strategies that differ in their approach and 

interaction with tooth substrates. Etch-and-rinse systems require the complete removal of the 

smear layer and a greater depth of demineralization of the dentin by phosphoric acid. Etch and 

rinse systems can be applied in two or three steps. First, the phosphoric acid is applied to 

demineralize the hard tissues for 15 sec, which is followed by vigorous rinsing for at least five 

sec to remove all the etchant from the surface. Following, the primer and adhesive are applied 

either as separate steps (Three-step etch-and-rinse) or combined into a single step (Two-step 

etch-and-rinse).  

Currently, the most commonly used bonding technique for etch-and-rinse adhesives is the 

so called  “water-wet-bonding” [49].  

In the early 1990's, Kanca [50] showed that water-wet-bonding produced higher bond 

strengths than dry bonding. Gwinnett [51] demonstrated that the water wet-bonding technique 

was attributed to water induced expansion of shrunken, dried matrices. The disadvantage of wet-

bonding is that the matrix is too soft and can easily shrink when the solvent is evaporated [52]. 

Although wet-bonding does not solubilize collagen, it has the advantage of breaking inter-
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peptide hydrogen bonds that open up spaces between collagen fibrils for resin infiltration [53] . 

However, the monomers must be relatively soluble in water. The simplest way to ensure that 

solubility is to solvate them in at least 50% ethanol or acetone [52].  

 Self-etch systems, unlike etch-and-rinse, don’t require a rinsing step. They use self-

etching primers containing acidic methacrylate primers with phosphate or carboxylic functional 

monomers that can etch and prime simultaneously. The smear layer is partially removed, 

exposing a thin layer of demineralized collagen. The water in the primer is then evaporated with 

air and the adhesive is then applied to the surface. Self-etching adhesives can be applied in one 

or two steps. Two-step self-etch systems combine etching and primer in a first step called self-

etching primer, which is then followed by the application of a hydrophobic adhesive resin as a 

second step. One-step self-etch adhesives combine all three steps, etching, primer and adhesive, 

into a single bottle. As expected and due to the diverse chemistry present in these single bottle 

adhesives, they are highly unstable leading to the most failures [54].  

Both systems lead to the formation of a hybrid layer as the resins infiltrate enamel and 

dentin layers replacing the inorganic component removed by an acid etchant or self-etching 

primer. Unlike self-etching systems, etch-and-rinse systems have been traditionally regarded as 

the gold standard since phosphoric acid can create a more prominent etching pattern, thus 

resulting in a thicker hybrid zone [55]. Self-etching systems, on the other hand, may be the 

preferred technique for many as they are known to be less technique sensitive and thus are less 

prone to post-operative sensitivity issues [56].  

1.6. ADHESION SUBSTRATES - ENAMEL AND DENTIN  

Enamel and dentin serve as the main two adhesive substrates. Enamel is highly inorganic 

and composed of hydroxyapatite crystals. It contains 96% inorganic material and 4% organic and 
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water by weight [57]. Being the outermost part of the tooth makes it most vulnerable to wear and 

caries [58]. However, bond strengths to enamel are typically high and predictable due to its 

tightly packed hydroxyapatite crystals [59], and thus the durability of the enamel bonds is much 

greater than those of dentin.  

Dentin, directly under enamel, is a more organic tissue consisting of 70% calcium 

phosphate mineral (hydroxyapatite), 20% organic material, and 10% water by weight [60]. This 

layer can act as a barrier to bacterial infiltration and bonding depends on the preparation 

technique used [32]. The resin-dentin bond can be achieved by micro-mechanical and chemical 

adhesion, as described in sections 1.4.1 and 1.4.2, respectively.   

1.7. REASONS FOR FAILURE OF RESIN COMPOSITE RESTORATIONS 

 Resin composites may fail due to several factors. Composites may undergo incomplete 

resin infiltration, hydrolytic degradation of the adhesive interface, marginal micro-leakage and 

consequently, secondary caries.  

1.7.1. Incomplete resin infiltration 

Incomplete resin infiltration is the result of the insufficient impregnation of the exposed 

collagen space following the application of bonding resin [61]. Attempts to infiltrate resin 

monomers into etched dentin by etch-and-rinse adhesives has been demonstrated to be only 

partially effective [62]. Given the short clinical time, achieving the complete replacement of the 

rinsing water by adhesive monomers is difficult and always results in hybrid layers that contain 

voids [63]. These voids are usually located at the hybrid layer, just above the mineralized dentin. 

They are the result of spaces around collagen fibrils that were not encircled by the infiltrating 

resin, and have been referred to as nano-leakage [62]. The use of self-etching adhesives, which 

remove less mineral from the dentin surface while simultaneously replacing them with resin 
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monomers, is known to minimize the discrepancies between the depth of demineralization and 

the depth of resin infiltration [64]. Long-term bond strength requires intimate penetration of the 

adhesive into the demineralized dentin and the formation of a durable hybrid layer [61].  

1.7.2. Hydrolytic degradation of adhesive interface 

Because of the hydrophilic nature of dentin, hybrid layers are susceptible to hydrolytic 

degradation and thus resin leaching [65]. Water penetration into the hydrophilic domains of the 

adhesive encourages leaching and these domains lack monomer/polymer conversion because of 

adhesive phase separation [66]. The resulting poorly polymerized hydrophilic phase degrades in 

the aqueous environment. The collagen matrix is now exposed and susceptible to the attack by 

proteolytic enzymes [67]. Methacrylate adhesives containing hydrolytically susceptible groups 

such as ester and urethane, hydroxyl, carboxyl, and phosphate groups, may then be hydrolyzed 

by chemical and enzymatic degradation [68]. Hydrolysis contributes to the reduction of bond 

strength over time and is considered a primary reason for resin degradation within the hybrid 

layer [69]. 

1.7.3. Marginal micro-leakage and secondary caries 

Micro-leakage is defined as “the penetration of bacteria, fluids, molecules, or ions into 

the spaces between the cavity walls and the restorative materials, resulting in sensitivity, 

recurrent (secondary) caries, discoloration of the restoration margins, irritation of the pulp, and 

restoration failure” [70]. In a study by Hansen [71], it was shown that the incremental technique, 

applying composites in increments, tends to improve marginal adaptation by resisting the resin 

composite shrinkage stress. Stresses applied on the restoration can disrupt the bonding and lead 

to the formation of gaps [72]. Thus, the proper bond of an adhesive to the dental tissue 

contributes to avoid marginal micro-leakage. Deficient margins eventually leads to the formation 
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of secondary caries [3]. This process usually relates to the failure of the bonding in the hybrid 

layer as discussed in section 1.7.1.   

1.8. ANTIBACTERIAL MONOMER AND SURFACTANT CROSS-LINKER 

 Recently synthesized monomers and cross-linkers (details regarding chemical 

composition and synthesis are described in chapter 2) containing antibacterial properties 

incorporated in dental adhesives may help to reduce the colonization of the caries causing 

bacteria, S. mutans without compromising their longevity and tensile strengths. In this present 

study, the incorporation of a quaternized amine group allows for the positive charge on nitrogen 

to disturb the cell membrane of bacteria.  An electrostatic interaction is present between NBr, 

where bromide is the counter ion and can be replaced by other counter ions in the media. As 

previously mentioned, Single Bond (3M ESPE) contains methacrylate groups. Methacrylates are 

used in resin adhesives because of their photopolymerization reactivity and superb mechanical 

properties. However, polymethacrylates themselves do not have antibacterial properties. 

Surfactant monomer and cross-linker have acrylate bonds for copolymerization with 

methacrylates in Single Bond to form polymer chains. Testing the monomer and cross-linker in 

various concentrations (0.05, 0.1, and 0.25 mg/mg) will provide us with critical information on 

their antibacterial effects on S. mutans, cytotoxicity, tensile strengths, and micro-hardness.  

1.9. LABORATORY TESTING FOR ASSESSING BOND DEGRADATION AND 

TENSILE STRENGTH 

Evaluating the bond degradation and tensile strengths of new adhesive systems is critical 

in determining its potential long-term efficacy. Ideally, in vivo long-term testing of these specific 

characteristics would provide the most optimum results. However, due to the fast-paced 

environment of adhesive production on the market, most newly developed adhesive systems 



17 

become quickly outdated. Therefore, the research and dental community accept the well-

established in-vitro testing of these adhesive systems to predict its clinical usefulness [73].  

1.9.1. Micro-tensile Bond Strength (MTBS) 

The micro-tensile bond strength test was first introduced by Sano, et al. in 1994 [74]. The 

main characteristic of the micro-tensile test is the reduced specimen size, which provides a better 

assessment of the potential effects of hydrolytic degradation [75].  

We can assess the physical properties and modulus of elasticity of the strength of 

adhesive bonds by utilizing the micro-tensile test. An advantage of this testing is the combination 

of evaluating both inter- and intra-tooth variabilities. Bonded molar teeth can be sectioned to 

about 1 mm thickness and stored for long-term testing. The test is ideal for small specimen and 

reduces the probability of the initiation of a crack, as is the case with some macro-testing 

methods.  

1.9.2. Ultimate Tensile Strength (UTS) 

 Ultimate tensile strength test assesses the cohesive strength of the body of adhesive. 

Here, the specimens are the adhesives alone, e.g. not bonded to teeth as is the case with micro-

tensile bond strength. Each specimen is fabricated into an hourglass shape with a fixed cross-

sectional area. The specimen shape is critical for allowing the failure to occur in the mid part of 

the specimen to measure the changes in the cross sectional dimensions [76]. Thus, failure can be 

induced in the same section across all specimens for consistency and accuracy. For example, if a 

rectangular specimen is tested, failure may result anywhere in the sample. The ultimate tensile 

bond strength gives us useful information in determining the maximum stress a material can 

endure before its tension failure [77].  
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1.9.3. Micro-hardness  

In 1951, Tabor [78] helped to settle the scientific basis for the indentation hardness 

testing. Micro-hardness tests are used to evaluate the hardness of a material and can be correlated 

to tensile strength [79]. This type of test is an indicator of wear resistance and ductility and is 

used specifically for smaller specimens where a macro-hardness test is not appropriate.  

Common standard micro-hardness tests include Knoop (HK) and Vickers (HV)-

indentation. The hardness is correlated with the depth of the indenter into the material, under a 

given load and within a specific period of time (sec). For both HK and HV, the test principles, 

procedures, and verification procedures are substantially identical [80]. By the use of an 

accurately controlled applied force, the testing machine produces indentations onto specimen 

surface.  

The differences between these two tests are the indenter geometry types and method of 

calculation of the hardness numbers. The HK indenter produces an elongated diamond-shaped 

indentation. Likewise, the HV produces an indentation, but of a different geometry, a pyramid-

shaped diamond. The size of the indentation is then measured using a light microscope equipped 

with a measuring device. It is critical that specimens are polished and have a smooth surface to 

appropriately identify and analyze the indentations.  

HV may be used at higher force levels than HK. HK penetrates about half as deep as the 

HV, making it more ideal to test brittle materials and thin layers. Because the HK major diagonal 

is about three times longer than the HV, this reduces the error in readings—which is critical 

when producing small indents with low loads and hard materials. HK test is the preferred method 

for evaluation of polymeric materials, such as resin composites, because it decreases the effect of 

elastic recovery [81]. Higher filler content may be present in one area of a sample compared to 
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another similar area and thus may result in greater variation. However, a study by Poskus, et al. 

[82] and Chang, et al. [81] demonstrated that there were no statistical significance between the 

HV and HK data of resin composites.    

1.10. LABORATORY TESTING FOR ASSESSING BIOCOMPATIBILITY 

 With the fabrication of new biomaterials, it is important to evaluate the ability of the 

material to perform their intended function without eliciting any undesirable effects. 

Biocompatibility testing is usually conducted following accepted published standards for medical 

devices [83] (ISO 10993). We can assess the antibacterial or cytotoxic effects of biomaterials in-

vitro. This will provide us with useful information that can be applied clinically.  

1.10.1. Cell viability 

 The MTT assay (Sigma-Aldrich, St Louis, MO, USA) is a common biological assay used 

to assess the cytotoxicity effects of biomaterials. The main principle of this assay is based upon 

cell metabolism. NAD(P)H-dependent cellular oxidoreductase enzymes should reflect the 

number of viable cells present. These enzymes reduce the tetrazolium yellow dye MTT (3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) to its insoluble formazan. This can be 

viewed visually as the solution turns to a purple color, indicating cell viability [84]. For 

quantifying the results, this solution’s absorbance can be measured via spectrophotometer at a 

wavelength between 500-600 nm.  

1.10.2. Antibacterial 

Because of the potential for secondary caries to develop under pre-existing restorations, it 

is critical, and it is the main objective of this thesis, to develop antibacterial additives that may be 

added to dental adhesives. Evaluating the effect of these potentially antibacterial adhesives 

against cariogenic bacteria Streptococci mutans and Lactobacilli species becomes crucial. 
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Currently, a number of dental materials possess antibacterial benefits. Their effects, however, are 

somewhat short-term, losing their antibacterial function overtime. Ideally, a material with slow, 

gradual and especially sustained release would be able to provide the intended long-term 

favorable effect [15]. 

There are multiple methods to test the antibacterial properties of biomaterials. Testing of 

dental materials include the agar disc-diffusion (qualitative) and colony forming unit 

(quantitative) methods [85]. The agar disc diffusion method measures the “zone of inhibition” of 

bacterial growth around the sample. This testing is less standardized than other antibacterial tests 

and its reproducibility should be within ±2mm [86]. It is an inexpensive commonly used method, 

especially for routine clinical diagnostic work [86]. Conversely, the colony forming unit (CFU) 

method allows us to interpret the antibacterial effectiveness of a biomaterial by counting the 

bacterial colonies resulting on the agar plate. This technique is more labor intensive as dilutions 

are tested and adjusted to analyze the number of colonies on a dilution plate showing between 30 

and 300 colonies [87]. This range is considered statistically significant. Less than 30 colonies on 

the plate indicates small errors in dilution technique or the presence of a few contaminants. If 

there are more than 300 colonies on the plate, colonies will have grown together and as a result 

poorly isolated. The data for this assay should reflect the number of CFUs per milliliter (mL) of 

sample.  

1.11. LABORATORY TESTING FOR ASSESSING MICROSTRUCTURE 

CHARACTERIZATION 

 Different tests are available to characterize, at a microscopic level, the micro-structure of 

new biomaterials. It is critical, in this context, that both surface and interfacial micro-structure 
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are evaluated since characteristics of the adhesive as well as its ability to infiltrate dentinal 

tubules are equally important.  

1.11.1. Scanning Electron Microscopy (SEM) 

 Through the use of SEM, the micro-structure of these adhesive systems can be 

characterized. SEM produces images based on the interactions of the electron beam with atoms 

within a sample. The response of these interactions are then collected by a detector. Common 

detectors include; secondary electron (SE) and backscattered electron (BSE).  

Secondary electrons originate from the surface of the sample. These electrons result due 

to the inelastic interactions between the primary electron beam and the sample [88]. Secondary 

electrons contain lower energy than the backscattered electrons. Typically, if the sample of 

interest is being analyzed for topographical purposes, then SE is the preferred method.  

Backscattered electrons are a result of elastic collisions of electrons with atoms, causing a 

change in electrons’ trajectory [88]. Higher signals are produced from larger atoms because they 

are stronger scatterers. BSE imaging is ideal for obtaining more information on a specimen’s 

topography, crystallography, and magnetic field.  
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CHAPTER 2 

MATERIALS AND METHODS 

 

2.1. EXPERIMENTAL AND CONTROL TESTING MATERIALS 

 The following syntheses of all experimental materials in this section were conducted by 

Dr. Cheng’s lab group, Furnas Hall, University at Buffalo. 

2.1.1 Synthesis of cross-linker 

First, a functional surfactant precursor for the cross-linker synthesis was prepared as 

follows: A 250-mL round-bottomed flask equipped with a magnetic stir bar was charged with 1‐

bromododecane (3.19 g, 12.8 mmol) and N-methyldiethanolamine (15.4 g, 128 mmol). The 

solvent used was acetonitrile (70 mL). The reaction mixture was stirred at 80 °C for 24 hrs. The 

solution was placed in an oil bath to maintain a consistent heat source. When the mixture was 

cooled to room temperature, the solvent was removed by rotary evaporation and the residue was 

washed with diethyl ether. After filtration, a white solid functional surfactant product 

precipitated (4.24 g, 11.5 mmol, yield: 90%). Verification of this product was performed by 

Proton Nuclear Magnetic Resonance (NMR) as shown in Figure 4.  

The following was preformed to obtain the final cross-linker surfactant product:  

A 100-mL round-bottomed flask equipped with a magnetic stir bar was charged with the 

functional surfactant precursor described above (1.29 g, 3.50 mmol), acrylic acid (0.756 g, 10.5 

mmol), N,N'-dicyclohexylcarbodiimide (DCC; 2.163 g, 10.5 mmol),and  4-

dimethylaminopyridine (DMAP; 0.085 g, 0.70 mmol). Dichloromethane was used as the solvent 

(35 mL). The reaction mixture was stirred at room temperature for 24 hrs. After this, the solvent 

was removed by rotary evaporation. Silica column chromatography was performed with 

methanol and dichloromethane (DCM; 1:10) to obtain the final yellow solid cross-linker product 
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(1.12 g, 2.35 mmol, yield: 67%). This product was verified by Proton Nuclear Magnetic 

Resonance, shown in Figure 5.  

2.1.2 Synthesis of monomer 

The following synthesis was performed to obtain the final monomer surfactant product: A 

50-mL round‐bottomed flask equipped with a magnetic stir bar was charged with 1‐

bromododecane (1.80 g, 7.2 mmol) and 2-(dimethylamino) ethyl acrylate (0.86 g, 6.0 mmol). 

Because the monomer contains a double bond and has potential to polymerize during the heating, 

a trace amount of 2,2-diphenyl-1-picrylhydrazyl was used to inhibit the potential premature-

polymerization. The solvent used was acetonitrile (15 mL). The solution was then placed in an 

oil bath. The reaction mixture was stirred at 80°C for 24 hrs. After the reaction, the solvent was 

removed by rotary evaporation and the residue was washed with ether (50 mL × 3). After 

filtration, a yellow solid monomer product precipitated (2.51 g, 6.56 mmol, yield: 91%). Figure 

6 confirms this product by Proton Nuclear Magnetic Resonance. 

All reactants and solvents described above were obtained from Sigma Aldrich, St. Louis, 

MO, USA.  

2.1.3 Incorporation of monomer and cross-linker into the resin-based adhesive 

After synthesis described in 2.1.1, monomer and cross-linker were weighed out (mg) 

using a standard AGCN 200 laboratory balance (Fulcrum Inc, Clifton, NJ, USA) and added to a 

certain amount of commercial Single Bond (SB) adhesive (3M ESPE) as per the synthesis in 

Figure 7 to obtain the respective testing concentrations in Table 1. For example, to obtain a 0.05 

mg/mg monomer: 15 mg of monomer was mixed with 285 mg of Single Bond. All samples were 

vortexed (Scientific Industries Inc, Bohemia, NY, USA) for two mins to ensure consistent blend. 
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Adhesives incorporating only monomer demonstrated greater viscosity than the rest of the 

blends. 

 

 

 

Figure 4.  Proton Nuclear Magnetic Resonance spectrum (500 MHz, CDCl3) of the functional 

surfactant precursor used to synthesize the experimental cross-linker. The letters indicate the 

location of the protons in the structure. 
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Figure 5. Proton Nuclear Magnetic Resonance spectrum (500 MHz, CDCl3) of the cross-linker 

surfactant. The letters indicate the location of the protons in the structure. 
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Figure 6. Proton Nuclear Magnetic Resonance spectrum (500 MHz, CDCl3) of the monomer 

surfactant. The letters indicate the location of the protons in the structure.  

 

 

 

 

Figure 7. Schematic of incorporation of monomer and cross-linker into the commercial 

formulation SB. Here, a monomer and cross-linker containing quaternized amine group gives the 

antibacterial characteristic of the functional surfactant. Blue light irradiation was applied for 20 

sec to induce radical polymerization. In the resulting copolymer product, concentration of 

antibacterial quaternized amine group is determined by the sum of x and y; crosslinking density 

is determined by y; the fraction of base dental materials gives z.  
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Table 1. The nine experimental adhesives tested in this study. Each group is listed with its 

respective concentration, description, and abbreviation or code. 

Group 
Concentration 

(mg/mg) 
Description (per 1 mg of total mass) Code 

1 0.05 Single Bond + 0.05 mg monomer 0.05 M 

2 0.1 Single Bond + 0.1 mg monomer 0.1 M 

3 0.25 Single Bond + 0.25 mg monomer 0.25 M 

4 0.05 Single Bond + 0.05 mg cross-linker 0.05 C 

5 0.1 Single Bond + 0.1 mg cross-linker 0.1 C 

6 0.25 Single Bond + 0.25 mg cross-linker 0.25 C 

7 0.05 Single Bond + 0.05 mg monomer + 0.05 mg cross-linker 0.05 MC 

8 0.1 Single Bond + 0.1 mg monomer + 0.1 mg cross-linker 0.1 MC 

9 --- Single Bond SB 

 

2.2. MICRO-TENSILE BOND STRENGTH (MTBS) 

2.2.1 Aims and hypotheses 

The purpose of this test was to evaluate both the bond strength at different time periods, 

as well as the bond degradation patterns of the experimental adhesives relative to the unmodified 

control Single Bond. Because the samples were prepared using different ratios of cross-linker 

and monomer, observing the effects this may have on the bond strength were of interest. The null 

hypotheses evaluated in this part of the study were: 

1. There would be no effect of the different concentrations of monomer or cross-linker on the 

bond strength when evaluated either at 24 hrs or 6 mos.  



28 

2.  There would be no effect of the different concentrations of monomer or cross-linker on the 

bond degradation pattern after 6 mos.  

2.2.2. Specimen preparation 

Dentin substrate was obtained from thirty-six recently extracted, healthy human molars, 

under a protocol approved by the State University of New York’s institutional review board (IRB 

ID No. 00000133). The teeth were equally and randomly assigned to the nine study groups outlined 

in the above section with four teeth per group.  

Occlusal enamel was ground and superficial occlusal dentin revealed using a water-cooled 

lab trimmer (Whip Mix, Louisville, KY, USA). A standardized smear layer was created with 

progressively finer silicon carbide abrasive papers of 320-, 400-, 600-, and 800-grit (SiC paper, 

Buehler, Lake Bluff, IL, USA). All adhesives were applied and polymerized with LED light-curing 

unit (VALO, Ultradent, South Jordan, UT, USA) with a power density of 1,400 mW/cm2 following 

manufacturer’s recommendations for Single Bond as per Table 2. The tooth structure was 

conditioned by applying 35% phosphoric acid etchant (Ultra-Etch, Ultradent, South Jordan, UT, 

USA) for 15 sec, rinsed for 5 sec and blot dried leaving dentin slightly moist.  Single Bond adhesive 

was then applied in 2-3 coats with gentle agitation of the surface for 15 sec. The surface was then 

air dried for 5 sec to evaporate the solvents and ensure a thin even layer of adhesive and 

polymerized for 10 sec. Resin composite (Filtek Z100, 3M ESPE, Saint Paul, MN, USA) was 

applied to the bonded surface in increments less than 2 mm and polymerized for 40 sec (Table 2). 

All teeth were incubated for at least 24 hrs before sectioning by the non-trimming technique 

(Figures 8 and 9) into beams with a cross-sectional area of 0.9±0.1mm [89]. Forty beams were 

obtained for each study group, twenty of which were randomly allocated for micro-tensile bond 

strength evaluation at 24 hrs and 6 mos respectively (n=20).  
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2.2.3.  Micro-tensile bond strength test 

For micro-tensile bond strength test (MTBS) evaluation, individual beams were mounted 

on a stabilizing jig with cyanoacrylate (Zapit, Dental Ventures of America, Corona, CA, USA) as 

per Figure 10 and stressed to failure with a universal testing machine (Micro-tester, Bisco, 

Schaumburg, IL, USA) at a cross-head speed of 1 mm/min. The load required to fracture the 

specimen was expressed in megapascals (MPa) by dividing the obtained load in Newtons (N) by 

the cross-sectional area of the bonded specimen (mm2).  

2.2.4. Statistical analyses 

The data met the requirements of normal distribution (Shapiro-Wilk test, p>0.05) and 

equal variance (Brown-Forsythe test, p>0.05). A two-way (ANOVA) was used to analyze the 

effect of variables ‘group’ ‘time’ and the interaction “group × time” on MTBS values. Post-hoc 

Tukey’s tests were used for pairwise multiple comparisons among group means. A significance 

level of p<0.05 was used for all tests. All statistical analyses were performed with SigmaStat 

version.3.5 (San José, CA, USA).  

 

Figure 8. Lateral view of a resin-bonded tooth specimen on a mounting jig being prepared for 

sectioning with Buehler diamond saw blade. 
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Figure 9. Occlusal view of resulting sectioning of 1mm slabs. The same sectioning was 

performed in the horizontal direction to obtain 0.9 ± 0.1 mm2 beams.   

 

 

Figure 10. Top view of a composite-dentin beam mounted on a stabilizing jig with 

cyanoacrylate. Sample is ready to be stressed to failure with a universal testing machine at a 

crosshead speed of 1 mm/min. 
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Table 2. Study Materials included in this study 

Material Composition Application protocol as 

per manufacturer 

Filtek Z100 Composite  

(3M ESPE) 

Matrix: Bis-GMA and 

TEGDMA 

Filler: Zirconia and Silica 

84.5% (0.6 um) 

• Place and light cure 

restorative in 2mm 

increments for 40 

sec 

• Use a condensing 

instrument for 

packing  

• Cure with exposure 

to LED light with a 

minimum intensity 

of 400 mW/cm2 in 

the 400-500nm 

range 

Single Bond 

(3M ESPE) 

Etch-and-rinse 

HEMA, Bis-GMA, 

dimethacrylates, ethanol, 

water, photoinitiator 

system, methacrylate 

functional copolymer of 

polyacrylic and 

polyitaconic acids, and 

silica nano-filler 10% wt. 

(5nm) 

• Etch with 35% 

phosphoric acid (15 

sec) 

• Rinse (10 sec) and 

blot dry 

• Apply 2-3 coats of 

adhesive with 

gentle agitation (15 

sec) 

• Air thin (5 sec) 

• Polymerize (10 sec) 

 

2.3. ULTIMATE TENSILE STRENGTH (UTS) 

2.3.1. Aims and hypotheses 

The purpose of this experiment was to evaluate whether incorporation of the cross-linker 

and monomer into Single Bond adhesive had an effect on the ultimate tensile of the unmodified 

adhesive blend. The null hypothesis was that the incorporation of monomer or cross-linker into 

the adhesive blend would have no effect on their ultimate tensile strength.  
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2.3.2. Specimen preparation 

Specimens corresponding to the different study groups were fabricated using a rubber 

hourglass-shaped mold (10 mm long × 2 mm wide at neck × 1mm deep). After coating the mold 

with a thin layer of petroleum jelly to allow easier specimen retrieval, the mold was placed over 

a polyester strip, which was sat on top of a microscope slide. The mold was carefully filled with 

the corresponding adhesive blend and covered by another polyester strip and microscope slide to 

ensure producing flat specimens free of internal voids. The adhesives were then polymerized 

through the glass slabs using LED light-curing unit (VALO) for 40 sec with a power density of 

1,400 mW/cm2, according to manufacturer instructions. Ten specimens were fabricated per 

group (n=10), which were polished using a series of SiC abrasive grit papers of progressively 

finer grit (320-800). All specimens were then incubated in DW at 37◦C and evaluated for UTS 

after 24 hrs, 1 wk or 6 mos. 

2.3.3. Ultimate tensile strength test 

For UTS evaluation, the specimens were mounted on a stabilizing jig with cyanoacrylate 

(Zapit) as per Figure 11 and stressed to failure by applying tensional force with a universal 

testing machine at a cross-head speed of 1 mm/min (Micro-tester). The load required to fracture 

the specimen was recorded and expressed in megapascals (MPa). 

2.3.4. Statistical analyses 

The data met the requirements of normal distribution (Shapiro-Wilk test, p=0.717) and 

equal variance (Brown-Forsythe test, p=0.087). A two-way (ANOVA) was used to analyze the 

effect of variables ‘group’ ‘time’ and the interaction “group × time” on MTBS values. Post-hoc 

Tukey’s tests were used for pairwise multiple comparisons among group means. A significance 
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level of p<0.05 was used for all tests. All statistical analyses were performed with SigmaStat 

version.3.5 (San José, CA, USA).  

 

 

Figure 11. Top view of an adhesive beam mounted on a stabilizing jig with cyanoacrylate. 

Sample is ready to be stressed to failure with a universal testing machine at a crosshead speed of 

1 mm/min. 

 

 

2.4. MICROHARDNESS 

2.4.1. Aims and hypotheses 

The goal of this part of the experiment was to evaluate the surface micro-hardness of 

each of the adhesive blends evaluated in this study using the Knoop hardness test. The null 

hypothesis was that the incorporation of monomer or cross-linker would have no effect on the 

surface micro-hardness values of the adhesive blends. 

2.4.2.  Specimen preparation 

To evaluate adhesive degradation in solvent, five specimens of 5 × 1mm for each 

experimental adhesive (n= 5) were made by polymerizing the adhesive in a 

polytetrafluoroethylene (PTFF) mold between two glass slabs. After polymerization, the samples 

were incubated for 24 hrs at 37°C and 100% humidity to allow post-cure polymerization. After 

24 hrs, the specimens were embedded in acrylic resin and polished with wet SiC abrasive discs 

of progressively finer grits, 240, 320, 400, 600, 800 and 1200 as depicted in Figure 12. 
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2.4.3. Micro-hardness test 

The specimens were allowed to dry at 37 °C for 24 hrs, and then subjected to a micro-

hardness test in which five indentations (50 g/15 sec), one central and four radial approximately 

100 μm apart, were recorded using a digital micro-hardness tester (HMV 2, Shimadzu, Tokyo, 

Japan). The instrument reports the hardness value using the following information:  KHN= 

14228 × c/d2, where 14228 is a constant, c is the load in grams and d is the length of the longer 

diagonal in μm. For a given specimen, the five hardness values for each surface were averaged 

and reported as a single value. For each specimen, the initial Knoop hardness number (KHN1) 

was registered as the average of the five hardness values. The specimens were then subjected to 

softening in absolute ethanol for 4 hrs at 37 °C as a form of accelerated aging [90]. The hardness 

test was repeated, and the post-conditioning hardness value was recorded (KHN2). The 

percentage difference of KHN1 and KHN2 was calculated.  

2.4.4. Statistical analyses 

 Since the data met the requirements of normal distribution (Shapiro-Wilk test, p>0.05) 

and equal variance (Brown-Forsythe test, p>0.05), individual Student's t-tests were conducted to 

evaluate the differences in micro-hardness values between baseline and 4 hrs of incubation in 

ethanol. A significance level of p<0.05 was used for all tests. All statistical analyses were 

performed with SigmaStat version.3.5 (San José, CA, USA). 
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Figure 12. Preparation of specimens for micro-hardness testing. Group 2 (0.1 M) shown above. 

Five 5 × 2mm adhesive discs were embedded to an acrylic mold for testing in the micro-hardness 

tester.  

 

 

2.5. CELL VIABILITY 

2.5.1. Aims and hypotheses 

Since the monomer and cross-linker added to the resin based adhesive have an unknown 

effect on the host, this part of the study was set out to investigate whether incorporation of these 

additives would have an effect on the cell viability of gingival fibroblastic cells as compared to 

the control adhesive without any additives. Evaluation of the effect of these materials on 

fibroblastic cells provides valuable information in determining if these materials are 

biocompatible and safe for in-vivo use. The null hypothesis investigated in this experiment was 

that there would be no differences in cell viability between the adhesive blends modified with the 

different concentrations of monomer or cross-linker and the corresponding unmodified control 

adhesive.  
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2.5.2.  Specimen preparation 

Three adhesive discs per group (n=3), 5 mm in diameter and 2 mm in thickness, were 

fabricated and incubated in 350 uL media as per International Organization for Standardization 

(ISO) for the testing of biomaterials describing the required ratio of specimen surface area to 

incubation solution volume [83]. Fresh adhesive blends corresponding to each of the study 

groups were used to fill a 5 × 2 mm mold, which sat between two microscope glass slabs to 

produce flat resin adhesive specimens of uniform dimensions. Following manufacturer 

recommendations, discs were polymerized for 20 sec with LED light curing unit (VALO, 

Ultradent Products) with a power density of 1,400 mW/cm2. After 24 hrs of incubation in 

distilled water at 37◦C, discs were then sterilized in 70% ethanol and dried for a minimum of 48 

hrs before testing. A total of ten groups were evaluated for this experiment; nine groups 

corresponding to the adhesive blends mentioned in section 2.1. and a cell control group with 

gingival fibroblast growth medium (alpha-MEM + 10% FBS + 1% antimycotic, pH 7.4, Gibco, 

Life technologies) and no disc present. 

2.5.3. Human gingival fibroblast (HGF) isolation and culture 

Discarded healthy gingival tissue was collected from subjects undergoing surgical 

treatment at the University at Buffalo School of Dental Medicine clinics (IRB protocol 663292-

1). Human gingival fibroblasts (HGFs) were isolated from these tissues and washed in minimum 

essential media (MEM) containing 10× antibiotics followed by 3 washes of media containing 1× 

antibiotics. Tissues were then minced into small pieces and attached to wells of a 6-well tissue 

culture plate for 30 mins. 1 mL of fresh MEM media + 10% FBS with antibiotics was then 
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added. Explants were then incubated at 37◦C, 5% CO2 until the migration of cells from the tissue 

explant could be observed. Media was replaced every three days.   

 To maintain routine culture, HGFs were grown to 80% confluence in MEM+10% FBS 

and passaged using trypsin/EDTA. This confluence was used to ensure there will be enough cells 

for the assay. 

2.5.4. MTT cell viability assay 

Human gingival fibroblast cells were cultured in a 96-well plate. Each well contained 

10,000-20,000 cells. The media from the cells was aspirated and 100 uL of serum-free growth 

media was added. After 24 hrs, the serum-free media was removed from the cells and 100 uL of 

disc-conditioned media was added per well. This was then incubated for 48 hrs. To prepare disc-

conditioned media, 3 discs per group were incubated in 350 uL of gingival fibroblast growth 

media for 24 hrs. 

The disc-conditioned media was then aspirated post 48 hrs and 100 uL of clear MEM 

media and 10 uL of 12 mM MTT (Invitrogen, Thermo Fischer Scientific, Eugene, OR, USA) 

stock was added to each well. This was incubated for 4 hrs, after which 75 uL of medium was 

removed from the wells. 50 uL of DMSO was then added to each well and mixed by pipetting. 

After incubation for 10 mins, the purple formazan appeared and the plate was measured at an 

absorbance of 540 nm (Flexstation 3, Molecular Devices, Sunnyvale, CA, USA). Groups were 

plated in triplicate (n=3). 

2.5.5 Statistical analyses 

The data met the requirements of normal distribution (Shapiro-Wilk test, p=0.291) and 

equal variance (Brown-Forsythe test, p=0.949). After normalizing the data, a one-way (ANOVA) 

was used to analyze the effect of the group variable on cell viability values. If differences were 
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present, an all-pairwise multiple comparison procedure Tukey’s test was used to identify these 

differences. A significance level of p<0.05 was used for all tests. All statistical analyses were 

performed with SigmaStat version.3.5 (San José, CA, USA).  

2.6. ANTIBACTERIAL 

2.6.1. Aims and hypotheses 

Both the monomer and the cross-linker are expected to possess antibacterial properties 

and consequently their addition to an adhesive resin material may render the material 

antibacterial. The aim of this part of the study was to identify which concentrations of monomer, 

cross-linker or both would exert effective antibacterial properties without a detrimental effect to 

the mechanical and physical properties of the polymerized resin adhesive material.  The null 

hypothesis was that there would be no differences in antibacterial affect between the different 

concentrations of monomer and cross-linker. 

2.6.2. Specimen preparation 

Discs for each of the nine study groups were prepared as described in section 2.4.2. with 

the only difference being the dimensions of the mold used to fabricate the specimens (8 × 1 mm 

in thickness). Following the methods by Imazato, et al.[91] and Renne, et al.[92], this 

experiment was carried out as per the ISO standards for the testing of biomedical devices. The 

average colony forming units (CFU) of three replicate experiments (n=3) were plated in 

duplicate. 

After polymerization, each group was put into its labeled well with distilled water and 

incubated at 37◦C for a minimum of 24 hrs. Discs were sterilized after this time for 10 mins in 

70% ethanol at room temperature. Each disc was then aseptically removed from the ethanol and 
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dried in a 24-well plate at room temperature that would then be used for the experiment after 48 

hrs. 

2.6.3. Antibacterial assay 

Streptococcus mutans (S. mutans) were gifted by Dr. Stefan Ruhl from the Oral Biology 

Department at University at Buffalo, SUNY (ATCC 25175). S. mutans was streaked on a Brain 

Heart Infusion (BHI) (Sigma-Aldrich, St Louis, MO, USA) agar plate and incubated in an 

anaerobic chamber at 37◦C. 5 mL of BHI broth was inoculated with S. mutans and left overnight 

in the anaerobic chamber at 37◦C. 

The following morning, S. mutans were sub-cultured by inoculating 5 mL of fresh BHI 

media with 0.5 mL of overnight culture and incubated for 4-6 hrs until the culture reached an 

OD600 reading of 0.3. 100 uL of the culture was pipetted directly onto the surface of each disc in 

a sterile 24-well plate. 1 mL of sterile distilled water was added next to each well containing a 

disc to provide a hydrated environment. The discs were incubated in an anaerobic chamber for 

18 hrs at 37◦C. 

15-mL conical tubes were filled with 9.9-mL of anaerobic BHI broth per group. The 

conical tubes and 24-well plate containing the discs were then removed from the anaerobic 

chamber and onto a bench. Each disc was aseptically removed from the well and placed in its 

respective 15-mL conical tube. Each tube was vortexed for 3 mins to disperse any bacteria left 

on the surface of the disc into the media and serially diluted in 1:10 dilutions for countable CFU 

data. 100 uL of each dilution was plated onto BHI plates in duplicate. All plates were then 

incubated in the anaerobic chamber at 37◦C for 24 hrs after which data was retrieved. 

2.6.4. Statistical analyses 
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Since the data did not meet the requirements of normal distribution (Shapiro-Wilk test, 

p<0.05) and equal variance (Brown-Forsythe test, p<0.05), a Kruskal-Wallis one-way ANOVA 

on ranks was used to analyze the effect of the group variable on absorbance values. If differences 

were present, an all-pairwise multiple comparison procedure Dunn’s test was used to identify 

these differences. A significance level of p<0.05 was used for all tests. All statistical analyses 

were performed with SigmaStat version.3.5 (San José, CA, USA).  

2.7. SCANNING ELECTRON MICROSCOPY (SEM) 

2.7.1. Aims 

The purpose of this part of the investigation was to observe the differences in 

hybridization patterns that may be achieved with the different adhesive blends. 

2.7.2. Specimen preparation 

During the sectioning of the bonded teeth in the MTBS study (section 2.2.2), 1 mm-thick 

slabs with the resin-dentin interface were set aside for SEM analysis, Figure 13. A thickness of 1 

mm was used for the slabs to ensure complete and rapid dehydration of the specimens in the 

SEM vacuum. One slab per group was polished using the following grits of SiC abrasive paper, 

320, 400, 600, and 800. The slabs were then left to dry for 24 hrs before analysis in the SEM.  

2.7.3. SEM procedure 

         After a drying period of 24 hrs, slabs were placed on aluminum stubs with conductive 

tape and coated with carbon. Carbon coating helps to eliminate the charging that may occur 

which can obscure the images of the specimens in SEM. Each slab was placed in a vacuum 

evaporator (Denton DV-502, Douglasville, PA, USA) for 20 mins. Different areas of one slab 

were analyzed at a time at 20kV and SEM images generated (SU-70, Hitachi, Tokyo, Japan). 
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Figure 13. Cross section view of a third molar tooth. The following layers where prepared for 

SEM imaging as pictured above before drying and applying carbon coating: (a) composite layer, 

(b) adhesive layer, and (c) dentin.  
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CHAPTER 3 

RESULTS 

 

3.1. MICRO-TENSILE BOND STRENGTH (MTBS) 

Two-way ANOVA demonstrated a significant effect of the group (p<0.001) and the 

interaction group × time (p<0.001), but no effect of the time on mean MTBS values.  

Figure 14 summarizes the MTBS values at 24 hrs and 6 mos of incubation. When the 24 

hrs data was evaluated, none of the groups demonstrated significantly different bond strength 

values from the control SB. When the different study groups were evaluated at 6 mos, only 0.25 

C demonstrated significantly lower bond strength values than control SB (p<0.001). 

A pairwise multiple comparison Tukey test revealed a significant increase in mean 

MTBS values after 6 mos for groups 0.25 M (p=0.010) and 0.1 MC (p=0.033), and a significant 

decrease in mean MTBS values for groups 0.05 C (p=0.009), 0.1 C (p=0.011) and 0.25 C 

(p=0.027) relative to their 24 hrs values. The remaining groups demonstrated no significant 

variations in bond strength values after 6 mos of incubation relative to their 24 hrs values.  
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Figure 14. Mean micro-tensile bond strength values for all study groups at 24 h and 6 mo of 

incubation. Bars represent mean values; brackets indicate SD values. Groups identified by 

different letters are significantly different (Tukey’s test, p<0.05). n=20. Upper case denotes 

differences between 24 hrs and 6 mos for each group. Lower case denotes differences among 

groups for each testing time.  

 

 

3.2. ULTIMATE TENSILE STRENGTH (UTS) 

Two-way ANOVA demonstrated a significant effect of the group (p=0.032), 

time(p<0.001) and the interaction group × time (p<0.001), on mean UTS values.  

Figure 15 summarizes the UTS data. No significant differences were found among the 

groups when they were evaluated at 24 hrs or 1 wk. When the groups were compared at 6 mos, 

both 0.25 M and 0.25 C demonstrated significantly higher UTS values than the control SB 

(p=0.005 and p<0.001 respectively). None of the other groups demonstrated statistically 

significantly differences from the control SB. 
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When the UTS values for each group were individually evaluated overtime, they all 

remained stable with no decrease in UTS values overtime. The only exceptions were 0.25 M and 

0.25 C, which in fact demonstrated increased UTS values after 6 mos of incubation. 

 

Figure 15. Mean ultimate tensile bond strength values for all study groups at 24 hrs, 1 wk and 6 

mos of incubation. Bars represent mean values; brackets indicate SD values. Different letters 

indicate significant differences between groups (Tukey’s test, p<0.05). n=10. Upper case denotes 

differences among testing times for each study group. Lower case denotes differences among 

study groups for each testing time. 

 

 

3.3. MICRO-HARDNESS 

Individual student's t tests demonstrated a statistically significant reduction in surface 

micro-hardness values after incubation in ethanol for 4 hrs for all groups. P values for all groups 

are provided in Table 3. The only exceptions were 0.05 C, and 0.1 C. While 0.05 C 

demonstrated no significant variation in micro-hardness values after incubation in ethanol for 4 

hrs, 0.1 C demonstrated a statistically significant increase in these values. Figure 16 summarizes 
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the surface micro-hardness values for all study groups. Table 4 summarizes the percent decrease 

or increase in hardness for all groups. All groups demonstrated a percent decrease, with the 

exception of 0.1 C and 0.25 C.  

 

Table 3. P-values for the surface micro-hardness values at baseline and 4 hrs of incubation in 

ethanol. 

 

 

 

Figure 16. Surface micro-hardness values for all study groups. Bars represent mean values; 

brackets indicate SD values. Different letters indicate significant differences between testing 

periods for each of the study groups (Student’s t-test, p<0.05). 

 

 

Table 4. Percent decrease/increase in micro-hardness after 4 hrs ethanol 

0.05 M 0.1 M 0.25 M 0.05 C 0.1 C 0.25 C 0.05 MC 0.1 MC SB 

<0.001 <0.001 <0.001 0.082 <0.001 0.044 0.002 <0.001 <0.001 

0.05 M 0.1 M 0.25 M 0.05 C 0.1 C 0.25 C 0.05 MC 0.1 MC SB 

-25% -28% -15% -5% 17% 4% -7% -9% -18% 
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3.4. CELL VIABILITY 

The one-way ANOVA demonstrated no significant difference in absorbance percentage 

values among the different study groups, specifically, there were no significant differences 

between the experimental adhesives and the control unmodified Single Bond adhesive as shown 

in Figure 17. Group 0.05 M demonstrated a slightly higher cell viability (76%) than all other 

groups, although according to statistical analyses it is non-significant.  

 

Figure 17. Cell viability values against human gingival fibroblastic cells for all study groups. 

Bars represent mean absorbance values; brackets indicate SD values. Groups identified by 

different letters are significantly different (One-way ANOVA, p<0.05). n= 3.  

 

3.5. ANTIBACTERIAL 

Kruskal-Wallis one-way ANOVA on ranks revealed a significant effect of the treatment 

group on the observed antibacterial properties (p<0.001). Pairwise multiple comparisons with 
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Dunn’s test demonstrated that the only groups with significantly reduced bacterial counts relative 

to the control group SB were 0.1 M and 0.25 M. Figure 18 summarizes the antibacterial 

findings.  

 

Figure 18. Antibacterial values against S. mutans for all study groups. Bars represent mean 

absorbance values; brackets indicate SD values. Groups identified by different letters are 

significantly different (Dunn’s test, p<0.05). n= 3. 

 

3.6 SCANNING ELECTRON MICROSCOPY (SEM) 

 Figures 19-27 depict the different patterns of resin infiltration of dentin tubules by the 

resin adhesive groups evaluated in this study. The three layers corresponding to the partially 

demineralized tooth substrate, dentin, the adhesive layer and the overlaying resin are shown in 

these images. From bottom to top, the partially demineralized dentin appears porous due to the 

presence of the dentinal tubules. The different shapes of the dentinal tubules depicted in the 

various images correspond to slight variations in cross-sectional cuts of the different specimens. 
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Immediately above, a darker thin layer corresponds to the resin adhesive layer, different varieties 

of which were tested in the present thesis. The layer appears dark as the adhesive is lightly filled 

resin (Table 2). Immediately between the layer of adhesive and the underlying dentin, dark 

projections (i.e. resin tags) corresponding to the areas of resin infiltration can be observed. The 

last layer on top corresponds to the overlaying resin composite restorative material. The 

restorative material is a highly filled resin composite (Table 2), very light and round in shape, 

are the filler particles. 

 No differences in the patterns of hybridization were shown for the different study groups. 

 

 

Figure 19. Backscattered SEM image of 0.05 M showing resin infiltration in dentin tubules. 
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Figure 20. Backscattered SEM image of 0.1 M showing resin infiltration in dentin tubules.  

 

 

Figure 21. Backscattered SEM image of 0.25 M showing resin infiltration in dentin tubules. 
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Figure 22. Backscattered SEM image of 0.05 C showing resin infiltration in dentin tubules. 

 

 

Figure 23. Backscattered SEM image of 0.1 C showing resin infiltration in dentin tubules. 
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Figure 24. Backscattered SEM image of 0.25 C showing resin infiltration in dentin tubules. 

 

 

Figure 25. Backscattered SEM image of 0.05 MC showing resin infiltration in dentin tubules. 
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Figure 26. Backscattered SEM image of 0.1 MC showing resin infiltration in dentin tubules. 

 

 

Figure 27. Backscattered SEM image of Single Bond showing resin infiltration in dentin 

tubules. 
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CHAPTER 4 

DISCUSSION 

 

4.1 MICRO-TENSILE STRENGTH (MTBS) 

The dentin micro-tensile bond strength of experimental and control dental bond adhesives 

were measured at 24 hrs and 6 mos of water storage. Distilled water was selected as the storage 

media to avoid the undue influence of minerals and enzymes present in artificial saliva solutions.  

The null hypothesis that there would be no effect of the different concentrations of 

monomer or cross-linker on the bond strength at 24 hrs or 6 mos was rejected. The initial bond 

strength values ranged from 25 MPa to 45 MPa, well above the accepted threshold for acceptable 

bond strength (20 MPa). While differences in mean bond strength values at 24 hrs were observed 

between experimental and control adhesives, these differences remained non-significant. This 

indicates that the incorporation of monomers and cross-linkers does not compromise the bond 

strength of SB.  

After 6 mos, there was a significant increase in mean MTBS values for 0.25 M and 0.1 

MC and a significant decrease in mean MTBS values for 0.05 C, 0.1 C, 0.25 C. The remaining 

groups demonstrated no significant variations in bond strength values after 6 mos relative to their 

24 hrs values. It appears that increasing the concentration of monomer increases the bond 

strength, as they are able to demineralize tooth structure when hydrolyzed. 

No definite trend was present for the monomer containing adhesives. While 0.05 M and 

0.1 M demonstrated stable bond strengths after 6 mos, 0.25 M showed a higher bond strength 

after 6 mos relative to its 24 hrs values. Similarly, the groups containing both monomer and 

cross-linker demonstrated either stable (0.05 MC) or increased (0.1 MC) bond strength after 6 

mos.  
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All the cross-linking groups, on the other hand, demonstrated a significant decrease in 

bond strength after 6 mos of incubation indicating that perhaps when combined with the resin 

adhesive components, makes them more susceptible to hydrolysis. We speculate that the 

increased concentration of cross-linker could have resulted in an inferior initial infiltration of the 

adhesive resin into the demineralized dentin perhaps compromising the bond strength values 

overtime. 

Single Bond (SB) is an etch-and-rinse adhesive that contains groups such as BisGMA, 

HEMA, dimethacrylates, ethanol, water, novel photo-initiator system, and a methacrylate 

functional copolymer of polyacrylic and polyitaconic acids [93]. Etch-and-rinse systems are 

known to have more hydrophilic monomers that can lead to water sorption and thus a decrease in 

micromechanical strength properties [94].  

Although 6 mos is typically not accepted as sufficient time to assess bond degradation of 

the adhesives, some adhesives may undergo early degradation so useful information can be 

obtained from 6 month water storage [95].  

The MTBS was used as the method of testing tensile strength because a more uniform 

stress distribution is created resulting in lower cohesive failures and higher bond strengths as 

compared to shear bond strength testing [96]. Furthermore, this method is appropriate for 

simulating the clinical situation since failures typically occur from tensile rather than shear 

forces [96]. MTBS allows for small bonded area testing and intra-/inter- tooth variability that can 

be evaluated at different time periods from the same specimen tooth.  

4.2. ULTIMATE TENSILE STRENGTH (UTS) 

The adhesive ultimate tensile strength was evaluated at 24 hrs, 1 wk, 6 mos. The null 

hypothesis that the incorporation of monomer or cross-linker into the adhesive would have no 
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effect on their ultimate tensile strength was rejected as changes were observed for some of the 

groups, especially after 6 mos of incubation. While no significant differences were observed 

after 1 wk, most of the groups demonstrated greater UTS after 6 mos, especially those containing 

monomer. This may be explained by a prolonged degree of post-cure set for those groups 

containing monomer, which in turn may be attributed to a higher reaction extent if curing was 

initially incomplete [96]. Surfactant monomer and cross-linker have acrylate bonds for 

copolymerization with methacrylates in SB to form polymer chains. Through copolymerization, 

cross-linking leads to networks and thus potentially greater tensile strengths. 

As stated in chapter 2, monomer containing adhesives appeared more viscous than the 

rest of the groups. This viscosity in turn may be partially responsible for a decrease in UTS 

values by reducing the degree of conversion of thick adhesive as the reactivity of major 

monomer could have been restricted [97]. The UTS values obtained in our study are within the 

range of what the literature has previously reported for SB. In a study by Loguercio et al., the 

authors reported a mean UTS value for SB of 41.5 MPa at 24 hrs and 28.0 MPa at 6 mos. These 

values are slightly higher than what we obtained in our research, 31.7 MPa and 25.1 MPa 

respectively. 

4.3 MICRO-HARDNESS 

A statistically significant reduction in surface micro-hardness values was shown for all 

groups after incubation in ethanol for 4 hrs with the exception of 0.05 C, 0.1 C, and 0.25 C. 

Hence, the null hypothesis was rejected. Groups 0.1 C and 0.25 C demonstrated an increase in 

micro-hardness values and 0.05 C was the only group that remained unchanged.  We speculate 

that a greater degree of monomer cross-linking in the cross-linking groups may have been 

responsible for the more stable surface micro-hardness after incubation in ethanol. Previous 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Loguercio%20AD%5BAuthor%5D&cauthor=true&cauthor_uid=19603585
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authors have shown that a more mechanically stable polymer would indeed result in increased 

hardness values [98]. 

Following the protocol by Leitune et al., specimens were softened in ethanol [90]. The 

diffusion of solvent through the polymer chains results in elution of components and the 

plasticization of the composite [99]. This process initially affects the surface properties, such as 

the hardness and wear resistance, and therefore the longevity of the restorative treatment [100]. 

In the present study, we opted to incubate adhesive resin specimens in ethanol as a form of 

accelerated aging. In addition to this, ethanol is commonly used to replace water within the 

collagen network and it is commonly thought to be as a better solvent for co-monomers than 

water, after solvent evaporation ethanol can also maintain the collagen fibrils in an expanded 

position for better resin infiltration [101, 102].  

4.4 CELL VIABILITY  

Cell viability is commonly dependent on dosage. The higher the concentration, the lower 

the cell survival rate [103]. A higher fibroblastic cell absorbance indicates higher cell survival. 

Ideally, a higher cell survival indicates a less cytotoxic material. In vitro studies investigating the 

cytotoxicity of dental adhesive systems are more convenient and reproducible than in vivo tests 

[104].  

None of the groups in this study demonstrated statistically significant differences from 

the control unmodified adhesive SB. Therefore, the null hypothesis was accepted.  

Although no statistical significance was present among the groups, 0.25 M and 0.1 MC 

demonstrated the least percent cell viability (58%, 46% respectively). It is possible that cytotoxic 

effects may result if adhesives are incompletely polymerized [105]. A limitation to this study 

could have been due to the absence of a dentin barrier since its presence reduces the adhesive’s 
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diffusion and consequent toxicity [106]. For the cell viability assay, discs of adhesives were 

exclusively tested. Perhaps testing the adhesives’ cytotoxic affects while bonded to dentin may 

have produced more clinically favorable results.  

The incubation period of 24 hrs was used in our since the most cytotoxic effects are 

thought to occur during the first 24 hrs since the resin is still undergoing polymerization [107]. 

The main goal of this assay was to ensure that the additives would not make the SB any more 

cytotoxic than what it already is. It has been reported in literature that a biomaterial is considered 

to be non-cytotoxic at a threshold cut off of 70% [108]. Our SB mean percent cell viability is 

reported as 72%, and all groups demonstrated very close values, with 0.05 M yielding the highest 

cell viability (76%). 0.05 M was the lowest monomer concentration tested which may explain the 

high cell viability percentage. It has been reported that monomers in the resin matrix of resin 

composites, such as BisGMA, UDMA, TEGDMA and HEMA can be cytotoxic [109, 110]. 

However, a study by Pupo et. al. [111], reported SB cell viability percent as 73%, similar to our 

results. In another study by Elias et. al. [106], the authors reported a cell death average of 33-

51%, “demonstrating a moderate cytotoxic effect of the tested systems.”  

4.5 ANTIBACTERIAL 

In this part of the study, the increased colonization of S. mutans corresponds to less 

antibacterial properties of the material. 

Only two groups, 0.1 M and 0.25 M, demonstrated significantly reduced bacterial counts 

relative to the control group, therefore the null hypothesis that there would be no differences in 

antibacterial properties between the different concentrations of monomer and cross-linker was 

rejected. It is important to note that the results may be due to the easily accessible cationic group 

in the monomer surfactant [112]. Because the cross-linker is a longer chain than the monomer, 
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the NBr is more tightly bonded in the core of the cross-linker, making it difficult to for access to 

its antibacterial properties.   

The incorporation of the quaternary ammonium methacrylate by these monomer and 

cross-linkers to the adhesive as described in chapter 2, allows for the copolymerization with the 

resin by forming a covalent bond with the polymer network [113]. This allows for a durable 

antibacterial activity for the resin adhesive [113]. As demonstrated by a study, the incorporation 

of quaternary ammonium dimethacrylates into dental resins yielded effective antibacterial results 

[114]. Quaternary ammonium agents are known to potentially cause bacteria lysis by binding to 

the cell membrane [115]. After the positively charged (N+) sites of the quaternary ammonium 

contacts the negatively charged bacterial cell, the electric balance of the cell membrane could be 

disturbed, causing the bacterium to lyse under its own osmotic pressure [112].  

Because the carbon chain needs to be long enough to penetrate the cell membrane, length 

of the monomer is important when evaluating the antibacterial effectiveness. It was observed in a 

study by Zhou et. al, that increasing the chain length from 6 to 12 carbons increased the 

antibacterial activity [113]. However, from our results it is demonstrated that only groups 0.1 and 

0.25 monomer showed statistical significance compared to the SB control. These groups 

contained the highest concentration of monomer. Unlike the study mentioned above, in our case 

the monomer is a shorter chain (19 carbons) than the cross-linker (23 carbons). It seems that with 

increasing monomer concentration there is an increase in antibacterial properties. This trend is 

also observed with the cross-linker.  

4.6. SCANNING ELECTRON MICROSCOPY (SEM) 

 The purpose of the qualitative observations was to visualize if there were differences in 

the infiltration pattern of the different resin adhesives into the partially demineralized dentin. It 
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was not appropriate to attempt to compare the adhesive layer across all groups because monomer 

and cross-linker individual components are not visible through SEM. The infiltration pattern of 

the dentinal tubules was analyzed instead. All groups demonstrated similar infiltration pattern of 

the dentinal tubules. In the SEM images, some tubules appear deeper or longer than other groups, 

this is due to the slightly different angles of sectioning of each of the individual teeth and is not 

appropriate to attempt to quantify number of tubules that appear successfully infiltrated and 

attempt to establish comparisons among the groups. Tubules that are infiltrated appear dark, like 

the adhesive layer. While tubules that are empty appear a brighter gray.  

4.7 COMPREHENSIVE ANALYSIS OF THE FINDINGS 

 One of the main objectives of adhesive dentistry is to provide the optimal adhesive 

system with superb antibacterial and micromechanical properties. Increased longevity and long-

term antibacterial benefits are of special interest.  

Overall, the highest concentrations of monomer (0.1 mg/mg and 0.25 mg/mg) 

demonstrated the most effective antibacterial properties, with the least amount of S. mutans 

colonies forming. However, because the highest concentration of monomer (0.25 mg/mg) 

produced a relatively low percent cell viability (58%), 0.1 M appears to provide the optimal 

balance between antibacterial properties with no cytotoxic effect or detrimental effect to the 

mechanical properties.  

In the present thesis, monomer and cross-linker were only incorporated and tested using 

one commercial dental adhesive, SB. This presents a limitation to the study, perhaps it may be of 

benefit to test the incorporation of these materials in additional adhesives to observe the effect of 

different chemistries in the biocompatibility and micromechanical properties of the material.   
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Another limitation to this study was the long-term testing. The longest test period 

performed was 6 mos, testing for 1-2 yrs may provide useful information on bond degradation 

and strength over time. Additionally, thermocycling was not used for accelerated aging which 

subjects a restoration and tooth to temperature limits similar to those in the oral cavity. This type 

of testing may affect bond strength, thus providing further information on the effects of 

incorporating monomer and cross-linker into SB.  

Testing the degree of conversion would have provided supplemental information for the 

cytotoxicity results, since dental adhesives are known not polymerize to 100%, which can 

consequently lead to a cytotoxic effect.   

Further investigation with longer-term testing periods for micro-hardness, antibacterial, 

and cytotoxicity may provide more in depth information, expanding on what was explored in the 

scope of this thesis project. Based on the present results, future directions may include focusing 

on the testing of monomer groups since this appeared to provide the best antibacterial results and 

favorable micro-tensile bond strength, ultimate tensile bond strength, cell viability, and micro-

hardness. Additionally, if there is a method to attach the antibacterial quaternary amine group 

onto the outside of the cross-linker as opposed to the inner portion of this chain, it may allow for 

optimal antibacterial results for enhanced accessibility for cells.  
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CHAPTER 5 

CONCLUSIONS 

 

Within the limitations of this in vitro study, the following can be concluded: 

• Incorporation of monomer and cross-linker into the Single Bond (SB) adhesive 

did not affect their bond strength at 24 hrs.  

• Incorporation of monomer and cross-linker into the SB adhesive did not affect 

their bond strength at 6 mos, except for 0.25 C, which demonstrated significantly 

lower bond strength than control SB. 

• While 0.25 M and 0.1 MC demonstrated a significant increase in mean MTBS 

values after 6 mos relative to their 24 hrs values, 0.05 C, 0.1 C, 0.25 C 

demonstrated a significant decrease in mean MTBS values after 6 mo. 

• While incorporation of monomer and cross-linker into the SB adhesive did not 

affect their ultimate tensile strength when evaluated at 24 hrs or 1 wk, when 

evaluated at 6 mos, groups 0.25 M and 0.25 C demonstrated significantly higher 

UTS values. 

• Incubation in ethanol for 4 hrs yielded a significant reduction in surface micro-

hardness for all groups except for 0.05 C and 0.1 C.  

• Incorporation of monomer and cross-linker, in any of the concentrations tested, 

into SB adhesive demonstrated no additional cytotoxic effect relative to control 

SB. 

• Only groups 0.25 M and 0.1 MC demonstrated a relatively lower mean percentage 

of viable cells, compared to SB 
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• Only 0.1 M and 0.25 M demonstrated antibacterial properties against S. mutans.  

No other groups did.  

• SEM observations seems to indicate that the type of hybridization that can be 

obtained after incorporation of monomer and cross-linker is no different from the 

hybridization pattern obtained with control SB. 

• It appears that a concentration of 0.1 mg/mg monomer provides the optimal 

balance for biocompatibility and micromechanical properties.  
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