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1. INTRODUCTION 

Buffalo State College (BSC) is an urban campus located in Buffalo, New York. BSC 

currently holds a National Pollutant Discharge Elimination System (NPDES) Permit to control 

point - source stormwater runoff  that discharges from six different outfalls directly into 

Scajaquada Creek, untreated (Figure 1.1).  

                                 

 

 

     

 

Figure 1.1: Six outfalls border the perimeter of BSC and discharge into Scajaquada Creek, Buffalo, NY 

Figure 1 
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Stormwater runoff can considerably degrade the water quality of a receiving water body, 

affecting aquatic life, recreational usages, aesthetic appearance, and possibly drinking water 

supply as it empties out into Niagara River. As of 2010 New York State Department of 

Environmental Conservation (NYSDEC) designated Scajaquada Creek a Class C water body 

impaired by its excessive loads of nutrients, floatables, pathogens and oxygen demand (Table 

1.1) and BSC is just one of the contributors to the impairment.  

Table 1.1: NYS DEC Surface Water Classification 

Classification Type Best Usages Description 

    

C
la

ss
 A

 Best usages are:  source of water supply for drinking, 

culinary or food processing purposes; primary and 

secondary contact recreation; and fishing. The waters shall 

be suitable for fish, shellfish, and wildlife propagation and 

survival. 

C
la

ss
 B

 

Best usages are: Primary and secondary contact recreation 

and fishing. These waters shall be suitable for fish, shellfish, 

and wildlife propagation and survival 

C
la

ss
 C

 Best usages are: fishing. These waters shall be suitable for 

fish, shellfish, and wildlife propagation and survival 

C
la

ss
 D

 

Best usages are: fishing. Due to such natural conditions as 

intermittency of flow, water conditions not conducive to 

propagation of game fishery, or stream bed conditions, the 

waters will not support fish propagation. These waters shall 

be suitable for fish, shellfish, and wildlife survival. The 

water quality shall be suitable for primary and secondary 

contact recreation, although other factors may limit the use 

for these purposes. 
www.dec.ny.gov 

To counteract further degradation of the creek from BSC stormwater discharges one of 

the control measures established under the NPDES permit is to adopt Best Management 

Practices (BMP). BMPs are essential to minimize water pollution in stormwater runoff. BSC has 
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developed a stormwater management plan that includes construction of a number of BMPs, one 

of them being a Hydrodynamic Separator System: In - Line Stormceptor STC - 2400 ® in one of 

its larger subcatchments (Figure 1.2). The Stormceptor is an optimal resolution to reducing 

stormwater pollution because it is designed to remove the sediment particles from stormwater 

runoff and a variety of pollutants that are associated with the particles.  

 

Figure 1.2: Rinker In - Line Stormceptor STC – 2400 ®.  Stormceptor is a BMP used to 

remove oil and particle-bound sediments. 
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The objective of this study was to assess how effective the installed Stormceptor was at 

removing the design specific pollutants of Total Suspended Solids (TSS), heavy metals, oil and 

grease, and non-design specific pollutants that include all other particle-bound pollutants such as 

phosphorus and nitrate. Water quality samples were collected during four storm events and 

analyzed.  A personal computer version of the Stormwater Management Model (PCSWMM) was 

calibrated and run to help assess stormwater runoff and the seasonal pollutant load discharging to 

Scajaquada Creek. 
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2. LITERATURE REVIEW 

2.1 Urbanization 

Urbanization on the one hand creates growth and economic opportunities in cities, but at 

the same time it leads to detrimental effects on the hydrology and water quality of local 

waterways. The hydrology is affected by an increased imperviousness which then increases the 

volume of runoff and peak discharges (Lee and Heaney 2003). When more roads, parking lots, 

and buildings are constructed pollutants build-up on these surfaces and ultimately are washed 

into stormwater or combined sewer systems and may be discharged to local receiving water 

bodies (Brabec et al. 2002; Ren et al. 2003). Hydrographs are a useful tool to observe the impacts 

of urbanization on water quality by taking into account the rate of flow over a period time during 

a storm event. Figure 2.1 shows what a typical hydrograph looks like after urbanization. Figure 

2.2 shows that adding a BMP greatly reduces the peak flow back to a pre-urbanization stage.   

Figure 2.3 illustrates that before urbanization runoff is able to infiltrate into the soil over a longer 

period of time. After urbanization infiltration is minimized and surface runoff builds to a peak 

more quickly and as the storm comes to a halt so does the flow (Ferguson 1998). Impervious 

areas are a good indicator of environmental quality (Arnold and Gibbons 1996). An impervious 

surface prevents natural pollutant processing in the soil by preventing percolation. Therefore, 

pollutants can end up in water bodies by traveling through a series of underground pipes that 

collect only storm water known as municipal separate storm sewer systems (MS4s) or through 

combined sewer overflows (CSOs). There is a correlation between impervious surface and the 

hydrologic changes that degrade water quality. 
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              Figure 2.2: Hydrograph with BMP 

http://05lovesgeography.blogspot.com 

 

Figure 2.1: Storm Hydrograph 

http://blackpoolsixthasgeography.pbworks.com/f/1265744759/Storm Hydrograph.png
http://4.bp.blogspot.com/-Yf3DEOCogVo/Tc54YTe_3dI/AAAAAAAAAB8/OJxob8k-TNo/s1600/Hydrograph2.jpg
http://05lovesgeography.blogspot.com/2011/05/hydrographs.html
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Figure 2.3: Before and after urbanization. Pre – development (before urbanization) shows 

that surface water can be infiltrated into the ground and post development shows that 

there is a greater amount of surface runoff and a smaller amount of infiltration. 

http://www.learnnc.org 

www.mde.state.md.us 

http://www.learnnc.org/lp/media/uploads/2010/05/mud1nb_450.png
http://www.learnnc.org/lp/editions/mudcreek/6394
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BSC has become more urbanized since it first opened its doors in 1871, from open spaces 

to more buildings and parking lots (BSC Stormwater Management Plan 2008) and this has led to 

an increase in hydrologic load. The college continues to expand, and to manage the pollutants in 

the stormwater runoff, BSC has installed a Stormceptor. When an area becomes more urbanized, 

the way the land is utilized can have an impact on the water quality (Tong and Chen 2002). 

Knowing the type of land use can assist in determining the types and amount of pollutants that 

may be found in the area (Goonetilleke 2005; Al-Hamdan 2006), although Maestre and Pitt 

(2007) had determined that land use cannot predict stormwater quality based on their study from 

collecting 594 samples for 16 different land uses. Likewise, they noted there are other ways to 

predict stormwater quality by looking at the characteristics of the precipitation the site or 

watershed receives, the physical characteristics of the site or watershed, and the anthropogenic 

activities that occur on each of the source areas within the site or watershed. Anticipating the 

type of pollutants in the runoff is beneficial for selecting pollutants to be analyzed for the 

monitoring protocol. BSC is an institutional land type and consists of four types of land uses: 

roads, lawns, roof tops, and parking lots (BSC Stormwater Management Plan 2008). Fewer 

pollutants would be found in lawns, whereas streets would contain the most pollutants (Baker 

2006). Nutrients are more likely to be abundant in lawns, oil and grease in parking lots, TSS, and 

heavy metals on streets and zinc on roof tops (Sartor et al. 1974).  

2.2 Stormwater Runoff 

The natural occurrence of rainfall, which inevitably flows down streets, sidewalks and 

rooftops turns into stormwater runoff that causes hydraulic sorting, where it sweeps up 

everything in its pathway including trash, oil and dirt (Baxter 2004). Ever since the 1960’s it has 

become evident that stormwater runoff is a source of pollution (Granier et al. 1990). Many 
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researchers have concluded that urban stormwater runoff contains high concentrations of heavy 

metals, bacteria, nutrients, and TSS that end-up in storm drains and outlets into rivers and lakes, 

negatively affecting receiving water bodies (Sartor et al. 1974; Bedient et al. 1980; Hall and 

Anderson 1987; Schroeter et al. 1989; Bannerman et al. 1993; Novotny et al. 1997). Locally, and 

for this study, the water body is Scajaquada Creek. Direct pollution from runoff affects dissolved 

oxygen levels, aquatic life, is aesthetically unpleasing and can cause eutrophication (Al-Hamdan 

et al. 2006; Pitt 2007). 

Point- source pollution on BSC  is regulated under the National Pollution Discharge 

Elimination System (NPDES)  where the college is allowed to discharge the water directly into 

Scajaquada Creek from the MS4 as long as the amount of the pollutants are minimized using 

BMPs (BSC Stormwater Management Plan 2008). 

In the 1800’s and first half of the 1900s Sewers were constructed to collect and dispose of 

stormwater before being discharged into the nearest water body. To minimize the financial 

burden of constructing a new separate system, domestic wastewater was discharged into these 

large storm drains, automatically converting them into CSOs (Figure 2.4). Untreated overflows 

caused by exceeding the hydraulic capacity of the combined sewers during wet weather events 

have proven to be a substantial pollution source (Filippi 1971; Field and Struzeski 1972).  
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Figure 2.4: Types of Sewer System. Illustration of the distinction between a CSO and SSO, 

diagram shows wastewater flow through a CSO on a dry day there is no surface runoff. 

Hydraulic overloading from stormwater runoff at the sewage treatment plant causes wastewater 

to back-up into residential properties and also not be properly treated. Build-up of pollutants in 

sewers and catchbasins can affect the performance of how the drainage system operates 

(Dauphin 1998). There are more CSOs located in the Northeast than any other region (Field and 

Struzeski 1972) and the city of Buffalo, NY is serviced by a Combined Sewer System that 

potentially discharges to local water bodies at 58 locations during storm events (Irvine et al. 

2005).  

2.3 BMPs  

Stormwater management is an important strategy to managing water pollutants and 

stormwater runoff volume at BSC. Utilizing BMPs are the best defenses against water pollutants 

found in stormwater runoff (EPA 2007). BMPs can be structural or nonstructural methods that 

are used to control pollutants found in stormwater runoff from being discharged into nearby 

waterbodies. Ice (2004) has emphasized that BMPs can actually anticipate stormwater runoff, 
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thus making this a proactive device. On the contrary other researchers have argued that BMPs do 

not effectively remove pollutants especially removing bacteria (Clary et al. 2008). This is based 

on the notion that BMPs are not being properly used (Roesner and Brashear 2001) and to what 

degree they remove pollutants. The quality of stormwater runoff can vary immensely because in 

a large part it is based on land use, traffic intensity, rainfall intensity, and climate which in turn 

are factors in the buildup and transport of pollutants in stormwater.  

There are numerous BMPs to choose from and ultimately the desired area of installation, 

the end results, and cost are deciding factors in choosing the appropriate BMP for effective 

removal of pollutants. BMPs have different treatment functions. There are structural BMPs 

designed for water quality and peak flow reduction  (i.e. hydrodynamic devices) and volume 

peak flow rate reduction by infiltration (i.e. bio retention ponds) (Pennsylvania Stormwater  Best 

Management Practices Manual 2006). The treatment flow capacity is an added benefit for the 

BMP to be effective. Without the treatment flow capacity the BMP will need a by-pass device to 

properly handle an excess of flow (Charbeneau et al. 2004). Nonstructural BMPs can be 

designated for educational purposes such as stenciling catchbasins with catch phrases so the 

public knows not to throw anything down the drain. 

The ability of a pollutant to be removed by a BMP is a function of the type and 

magnitude of the BMP treatment processes (i.e. infiltration, settling) in combination with the 

susceptibility of the bio-physio-chemical properties of the pollutant to be removed by a particular 

kind of treatment process. Scholes et al. (2008) conducted a study on 14 different BMPS that 

included a detention basin and constructed wetland to assess BMP performance (Table 2.2). It 

was concluded that a settling tank was the worst at removing TSS, E.coli, nitrate and phosphorus 
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and using a treatment process that involved infiltration was the best where runoff percolates into 

the ground and a sand media filters the pollutants (Figure 2.5). 

Table 2.2: Scholes’ BMP Case Study 

Types of BMPS 

Filter Drains Porous Asphalt Porous Paving 

Sedimentation Tank Filter Strip Swales 

Soakaways Infiltration Trench Infiltration Basin 

Retention Ponds Detention Ponds Extended Detention 

Basin 

Lagoons Constructed Wetlands  
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Figure 2.5: Infiltration vs. Sedimentation Tank BMP 

http://twosweet.bse.vt.edu/Tess/stormwater/ITSS.asp 

http://www.stormwater360.co.nz 

Sedimentation Tank 

Infiltration 

http://twosweet.bse.vt.edu/Tess/stormwater/images/infil_trench.jpg
http://twosweet.bse.vt.edu/Tess/stormwater/ITSS.asp
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2.4 Stormceptor 

BSC currently has 16 different types of BMPs (Figure 2.6) and this literature review will 

focus on a hydrodynamic device known as an In - Line Stormceptor STC - 2400 ® manufactured 

by Rinker. There are several other proprietary hydrodynamic devices available including 

Continuous Deflective Separator (CDS units), Downstream Defender 
TM

, and Vortechs 
TM

. 

Hydrodynamic devices are flow through structures with a settling or separation unit to remove 

sediments using energy from flowing water (EPA 2010), primarily removing floatables, and 

coarser and heavier suspended sediments along with particle-bound pollutants from stormwater 

runoff (NJCAT 2004; Wilson et al. 2009). 

 

Stormceptor 
 
Detention Pond 

Figure 2.6: BSC Structural BMPs. This map shows only the  

structural BMPs in the six different sewersheds. 
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The In - Line Stormceptor STC- 2400 ® operates by separating sediments and other 

water pollutants by means of centrifugal force and a flow by – pass to prevent scouring. Also, it 

operates based on the drainage area and rate of stormwater flow rather than volume (Clayton 

1999).  The Stormceptor is divided into two components, the bypass chamber (upper chamber) 

and the treatment chamber (lower chamber). The flow enters the inlet of the Stormceptor and the 

weir allows for a max 9” head build-up and a design capacity of 475 gallons per minute (for the 

STC -2400 model) before by-passing. The 8” orifice plate (for the STC – 2400 model only) 

controls the rate of flow into the treatment chamber via a drop pipe. The pollutants from the 

treated water are then stored in a sedimentation tank while the treated water exits out of the riser 

pipe (which is located in the treatment chamber) and into the 36” round corrugated outlet pipe of 

the Stormceptor. The Stormceptor STC- 2400 series can hold a large amount of pollutants 

because the sedimentation tank is 60” x 96” and can hold 49 ft
3
 of sediment and 840 gallons of 

oil for a total holding capacity of 2,462 gallons (Figure 2.7) (NJCAT 2004).  
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Figure 2.7: Schematic Views of Stormceptor Schematic drawing of the dimensions of the 

cross- sectional and plan view of the Stormceptor (Rinker Materials 2006) 

 

 Hydrodynamic devices are of the most popular BMPs sought because they generally have small 

footprints and can be installed anywhere including in manholes (Wilson et al. 2009; EPA 2010).   

It is normally suitable to install a Stormceptor in a hotspot where the largest amount of pollutants 

occurs such as a parking lot (EPA 1999; Sonstrom et al. 2002). The Stormceptor is an optimal 

resolution to reducing stormwater pollution during high and low flows. It is distinctive from 

other BMPs because it has the potential of removing small size particles that include clay and 

fine silts (20 µm) as opposed to other BMPs that can only remove larger particle sizes 

established by Tarp Tier 1 New Jersey Corporation for Advanced Technology particle size 

distribution (NJCAT PSD). Referring to Figure 2.8A under high flow conditions the built in by-
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pass prevents resuspension of sediments in the treatment chamber. Regular maintenance of oil 

and sediment removal from the 6” vent pipe (disposing of it properly) is imperative for the best 

performance of the Stormceptor (NJCAT 2004) especially when the sediment reach a depth of 

12”. Figure 2.8B shows flows under normal conditions. 

 

Figure 2.8A:  High Flow Operation of Stormceptor. 

 

 
Figure 2.8B: Low Flow Operation of Stormceptor. 

www.rinker.com 

Vent pipe 

By-pass 
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2.5 Sewer System  

Since the Stormceptor performs in conjunction with the sewer system it is important to 

describe the characteristics of the sewer system in terms of flow, pipe size, slope, and material. 

The MS4 is designed to collect rain and melting snow (stormwater runoff) from the catch basins 

where it then flows through a system of varying sized pipes and manholes and discharges the 

runoff  untreated, for example, as is the case in Scajaquada Creek (Figure 2.9).  

 
. 
The Stormceptor is manufactured to accommodate everyday flows. The Stormceptor 

operates more efficiently in smaller drainage areas and when there is only one influent pipe 

Figure 2.9: BSC MS4. This map shows all the stormwater pipes 

on BSC and their respective outfall 
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connected to the Stormceptor (Rinker Materials 2006), and this is why the design of the MS4 

should be taken into consideration.   

2.6 MS4 Flow and Sediment 

The storm sewer pipe size has to be of an appropriate diameter for it to be effective in 

carrying stormwater throughout the MS4.  The larger pipe sizes are in the main trunk line of the 

MS4 and retain a higher volume of stormwater, whereas the secondary pipes are smaller in 

diameter (Iowa Stormwater Management Manual 2009). Normally water flows from smaller to 

larger size pipes. Ideally for retrofitted areas the Stormceptor should be installed on the lateral 

storm drains rather than trunk storm sewers to prevent a surge of water entering the Stormceptor 

(Rinker Materials 2006). The sewer pipe on BSC that leads into the Stormceptor is a 36 inch 

round corrugated diameter pipe (measured by Environment Health and Safety office at BSC) 

which means it has the capabilities of carry a large volume of stormwater right into the 

Stormceptor. This could also lead to stormwater flowing over the by- pass weir, preventing 

proper treatment. By – passing of the Stormceptor occurs more frequently when the sewershed is 

not appropriately sized to accommodate the BMP (Rinker Materials 2006). As a prevention 

factor to reduce pollutant deposition, pipes are sloped at 2% to allow water to flow at a minimum 

velocity of 2.0 fps when the pipe is at least half full (Iowa Stormwater Management Manual 

2009). Storm sewer pipes can naturally self-cleanse with the right amount of hydraulic flow.  In 

contrast to the Iowa Stormwater the American Society of Civil Engineers (1970) recommended a 

velocity of 3.0 fps (0.9 m/s) when the pipe is half-full or full to ensure self - cleansing .  

 Water pollutant particulates in the MS4 rely on the flow rate to be transported and Pitt 

and Clark (2007) have listed three phases for sediment transportation. As sediment is flowing it 

settles, becomes part of the bed load, or accumulates as sediment that can be scoured later. As 
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part of Pitt and Clarks (2007) study they found that the drainage system does produce a build-up 

of sediment, primarily because larger sediments settle at the bottom of the sewer pipe and 

smaller particles stay suspended while settling out slowly becoming part of the bed load. As the 

flow stops the sediments will dry out and compact. When the next storm event occurs the settled 

sediment becomes resuspended and the cycle continues until the sediment eventually flows out 

the outfall (Pitt and Clark 2007).  

2.7 First Flush  

One of the key components of stormwater runoff is the first flush.  The first flush occurs 

when the influent stormwater pollutant concentrations are higher at the start of a storm than at 

the end (Saget et al. 1996; Deletic 1998; Lee et al. 2002; Sansolone 2004). Conversely, other 

studies suggest the first flush might not even exist (Deletic 1998; Office of Environmental and 

Heritage 2011). Overall, research has concluded that the first flush can result in a substantial 

concentration of pollutants at the beginning of storm events however the concentration peak may 

vary for different pollutants during the same storm event.  The high concentration detected 

during the first flush happens because materials build up between storm events and then are 

flushed with the initial high flow of an event (Charbeneau et al. 2004). Many studies have shown 

that the first flush is defined by different characteristics that include the impervious area, 

antecedent period, volume of rainfall or rainfall intensity (Hager 2001; Lee et al. 2002). It also is 

more evident in smaller sewersheds on impervious surfaces than in larger sewersheds on 

pervious surfaces (Kang et al. 2006).  

 The first flush typically carries a plethora of pollutants, and during water sampling the 

first flush is considered separately from the other water samples (Lee et al. 2007). The 

Stormceptor was developed to treat stormwater runoff and the first flush (Rinker Materials 
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2006). Saget et al. (1996) has noted more BMPs should be installed if the first flush occurs often. 

Selecting the right BMP to handle the first flush and volume is beneficial for improving water 

quality, particularly since the initial volume of water to treat is low, but the concentration of the 

pollutant is high. 

2.8 Sources of Pollutants 

It has been a major goal for many government agencies to remediate water pollution 

using BMPs. To counteract stormwater pollution, street sweeping and basic housekeeping can 

reduce the amount of pollutants. BSC employs these vehicles regularly and also has a contract 

service to pump out debris from catchbasins (BSC Stormwater Management Plan 2008; Irvine et 

al. 2009). Water pollutants associated in this particular type of area can range from materials 

being washed away from street asphalt, parking lots, automobile emissions, urban infrastructure, 

particulate atmospheric deposition, roof tops, old sewer pipes, vehicle by-products, litter, and 

lawns (Bannerman et al. 1993; Irvine et al. 2009). Most pollutants such as heavy metals, 

polycyclic aromatic phosphorus (PAHs), and organic compounds are particle bound to 

suspended solids, which makes TSS the most important indicator for water quality (Rossi et al. 

2005).  

2.8.1 TSS  

Problems associated with TSS in stormwater runoff are that it affects water quality and 

aquatic life. Water becomes warmer when there are high concentrations of TSS lowering the 

dissolved oxygen level and also affecting photosynthesis. TSS is harmful to aquatic life by 

reducing growth and reproduction. It also clogs the fish gills and decreases resistance to disease 

(North Dakota Health Department 2005; Lake Superior Streams 2010). The most common 

source of TSS is from weatherization of rocks, debris and soil particles. Another commonly 
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known source is road – deposited sediments (RDS) which is generated from particulates such as 

natural sources of soil material, plant and leaf litter, dry deposition, and also from vehicle by-

products as mentioned above. RDS is associated with iron, copper, zinc, lead, magnesium, 

chromium, and cadmium (Robertson and Taylor 2007). Dirt accumulated on tires from 

construction sites can be deposited on the street and be broken down into finer particles by traffic 

and can lead to a buildup of sediments (Rogge et al. 1993). It is known that finer particulate 

matter such as pulverized dirt from heavy traffic use stays suspended longer in the stormwater 

runoff where larger particles settle out (Dong and Simsiman 1983). Feng et al. (2007) noted that 

air emissions from smoke stacks are also a source of TSS from atmospheric depositions. 

2.8.2 Heavy Metals 

Heavy metals found in stormwater runoff are primarily from vehicle by – products, roof 

tops, and parking lots. Metals such as copper are found in brake linings, and zinc and cadmium 

are present in worn tires (Mangani et al. 2005). Zinc is used as a metal coating in alloys and is 

often found in stormwater runoff. Galvanized rooftops and downspouts can lead to heavy zinc 

concentrations when it rains (Bannerman et al. 1993; Bolt and Bruggenwert 1977).The roughness 

of the road (asphalt vs. concrete) and traffic density affects the tire tread and can wear tires out 

leaving particulate matter left on the road, which produces zinc (Christensen et al. 1979; Rogge 

et al. 1993; Sansalone and Chrisitna 2004). Tire particulates can be associated with abrupt 

deceleration. A study showed that concrete has higher levels of lead and zinc versus asphalt 

roads (Ellis et al. 1981). Zinc can also come from motor oil and grease and lead can be sourced 

from bearing wear and atmospheric fallout (Soil & Water Conservation Society of Metro Halifax 

2006).  
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A study analyzed a multitude of metals that included zinc, copper, lead, nickel mercury, 

and chromium and it showed zinc and lead had the highest concentration in runoff (Sartor and 

Agardy 1974). Higher metal levels are typically associated with finer (<63 µm) street sediment 

sizes (Irvine et al. 2009). Lead and zinc are both detrimental to aquatic life where reproduction, 

growth and survival are reduced. Aquatic organisms are affected when lead concentrations reach 

1.0 – 5.1µg/l (Eisler 1988). Zinc not only causes problems with reproduction and growth but it 

affects behavior, blood and serum chemistry when concentrations reach 90µg/l (Sprague 1968).  

2.8.3 Hydrocarbons 

Hydrocarbons (detergents, oil and grease) are an issue in stormwater runoff because they 

can cause blockage in sewer systems once they solidify and can lead to back-up sewer problems. 

They negatively impact the water quality and can be harmful to aquatic life. Even the smallest 

concentration of 50µg/l starts to affect aquatic life while 0.3-0.6 mg/l is lethal for them 

(Stenstrom et al. 1982).  Sources of oil and grease tend to be anthropogenic and can consist of 

fuel, motor oil, lubricating oil, hydraulic oil, cooking oil and animal fats (E.S. Babcock and Sons 

Inc. 2009).  

Accident spills and dumping of oil and fuel into catchbasins can lead to oil being detected 

in stormwater runoff. Burning fuel from a smoke stack can cause atmospheric fallout which is 

another source of oil being detected in stormwater runoff. Typical vehicle usage can lead to 

exhaust particulates from the emission of the engine and this usually ends up in stormwater 

runoff .When there is an increase in rainfall the hydrocarbon load increases also, therefore the 

hydrocarbon load is correlated to the total rainfall (Stenstrom and Silverman 1982). One of the 

sources of hydrocarbons is from surfactants in detergents (Chiewet al.1997) 
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2.8.4 Bacteria 

Bacteria are a water quality concern because they affect recreational activities such as 

fishing and swimming. It may seem unusual to find E.coli in an institutional area such as BSC 

where there are no pets or wildlife in this area that produce these bacteria. Taking into 

consideration that this is an MS4 and not a combined sewer overflow it may seem impossible to 

contract bacteria in the runoff and reviewing utility drawings indicates that there are no illicit 

connections of sanitary pipes to stormwater pipes. Irvine et al. (2011) collected samples during 

wet weather from 4 of the 6 MS4 outfalls for E.coli and their results showed that there was 

indeed high concentrations of E.coli at three of the sites (2500 –  4200 CFU/100ml). Bacteria are 

found in stormwater runoff and are attributed to non-anthropogenic sources (Clary et al. 2008). 

This can include trash being left on the ground causing bacteria to form. Stormwater runoff can 

carry fecal matter produced by squirrels and mice (Arnold et al. 1996). Bacteria often starts to 

multiply in warm weather conditions causing even more severe problems and may reach levels 

similar to ones found in sewage.  

Bacteria are often accumulated in soil particles where they then become entrained by 

water (Arnold et al. 1996). Old sewer pipes can be the culprit to bacteria on BSC because the 

lateral truck lines are buried in the soil (BSC Stormwater Management Plan 2008). When 

concrete sewer pipes get old they can crack and since they are compacted by soil the bacteria in 

the soil can leach into the sewer pipes. Since bacteria are bound to the soil when the soil 

becomes saturated it allows bacteria to move more rapidly (Smith et al. 1985), which causes 

higher concentrations to be detected in the runoff. Another source of bacteria in stormwater 

runoff is attributed to airborne particulates as has been shown from collection of rainfall samples 
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(Berg, 1978). In the same study soil particles were a culprit and it was discovered there were 

high enough nutrient levels to start bacteria growth. 

2.8.5 Nutrients 

Nitrate and phosphorus are macronutrients naturally found in the soil. Level of these 

nutrients is very dependent on soil texture and structure and pH. Silty clay and loam soils 

increase nutrient retention. Since this area has silty clay loam soil it increases the nutrient 

retention. Plants take up all types of nutrients and when they cannot store or take-up these 

nutrients they are left in the soil. Likewise silty clay and loam soils are able to retain water 

(Holder 1997). Nitrate and phosphorous are both water pollution concerns because they can lead 

to harmful effects to aquatic life, eutrophication, and algae blooms. Eutrophication makes lakes 

aesthetically unpleasing while algae blooms decrease dissolved oxygen and increase turbidity 

levels making it difficult for aquatic life (Waschbusch et al. 1995; Hseih et al. 2007). Nitrate is 

highly soluble in water and has a low retention by soil particles (Majumdar and Gupta 2000) 

making it more susceptible to stormwater runoff. Nitrate and phosphorus occur naturally in soil, 

but adding fertilizer exacerbates these macronutrients in stormwater runoff. 

2.9 Percent Removal Rate 

In an effort to determine the effectiveness of a BMP at removing pollutants there are a 

few different methods that have been establish by the EPA. These methods include determining 

the percent removal rate by comparing pollution concentration from the influent and effluent 

samples before and after treatment by the Stormceptor, monitoring the volume reduction 

potential for infiltration of surface runoff and by taking into account the total pollutant load.  The 

percent removal method is taking the concentration of the pollutant at the effluent and 

subtracting it from the influent and changing it into a percentage. This method can also give out 
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false percentage readings because it relies on incoming stormwater that has variability in 

pollutant concentrations. If pollution concentrations are high in the influent then the percent 

concentration would have a high removal rate. If there is a low amount of pollutants coming into 

the inlet then there would be limited percent removal. In essence the percent removal method is a 

function of influent stormwater (Urbonas 2003; Wright Water Engineers and Geosyntec 

Consultants 2007; Center for Watershed Protection 2007).  

The volume reduction method takes into consideration the volume of water that is 

carrying the pollutants. If the BMP is capable of reducing the volume, the pollutants will also be 

reduced. The EPA has acknowledged that this is the best method to determine the effectiveness 

of a BMP. The total load is calculated using the volume of water that is discharged from the 

BMP over a given period and multiplied by the mean concentration of the pollutant. The basis of 

these methods is to measure discharge and analyze the pollutants being retained by the BMP and 

therefore a monitoring protocol has to be conducted in order for any of these three methods to be 

effective.  

 While there are three methods to determine the overall performance for the BMP the 

volume reduction method gives the most accurate results and the least recommended method 

determined by the EPA and other researchers is the percent removal (EPA 2009) because it 

involves greater uncertainty. URS Greiner Woodward Clyde (1999) has argued it can be 

strenuous determining the appropriate method to quantifying efficiency, performance, and 

effectiveness. Urbonas (2003) concluded that there are no standards for how to measure the 

performance of a BMP which can affect the overall evaluation of the effectiveness. A large 

factor has to deal with the variety of BMPs out there and their different functions. Utilizing a 

particular method to determine the effectiveness might work for one BMP, but may not be as 
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promising for another. URS Greiner Woodward Clyde (1999) suggested that the methods could 

be made more comparable by classifying BMPs into four categories based on their functions. 

BMPs that have well-defined inlets and outlets and the treatment process is based on detention 

storage of stormwater is one category. The opposite of that is BMPs that do not depend on 

detention storage of stormwater and are classified into another category. BMPs that do not have a 

well-defined inlet and/or outlet and widely distributed BMPs that use reference watersheds to 

evaluate effectiveness go into two other categories.  

Even after utilizing one of the three methods and following the sampling protocols, 

determining the effectiveness of the BMP can be affected by different types of parameters. Size 

and land use of the contributing subcatchment can be an issue and in the case of the Stormceptor 

it operates more efficiently in a smaller subcatchment located in an impervious area (parking 

lot). Regional differences in soil type play a role because of different climates and the ability for 

soil to retain water. Not taking the appropriate number of storm event samples can lead to bias in 

the results. The rainfall and particle size of the influent can affect the performance of the BMP. If 

there is not enough flow in the MS4 being produced by the rainfall then the water samples taken 

might be from stagnant water or the samples could collect build-up sediments. Most importantly 

the manner in which pollutant removal efficiency is computed and monitoring technique 

employed (Center for Watershed Protection 2007) could affect results. With the Stormceptor and 

other BMPS the by-passes and overflows can affect the efficiency because the pollutants are not 

being treated at the effluent (URS Greiner Woodward Clyde 1999). The Stormceptor does not 

work well at removing pollutants with poor settleability or dissolved pollutants, but it can be 

more effective if there were multiple BMPs connected to the MS4 (EPA 1999). 
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Manufacturers of hydrodynamic devices have varying claims regarding the effectiveness 

of treatment processes (Dan Cloak Environmental Consulting 2005). There are organizations that 

provide an evaluation of manufactured BMPS by testing their performance and establishing 

protocols. Some of these organizations are: New Jersey Corporation for Advanced Technology 

(NJCAT), Canadian Environmental Technology Verification program (CETV), American Public 

Works Association (Al- Hamdan et al. 2007). EPA (1999) states that the Stormceptor is capable 

of removing 50 to 80% of the TSS load when used properly. Rinker the manufacturer of the In-

Line Stormceptor has a removal rate of 80% for TSS and 95% for oil and grease (standard) 

(Rinker Materials 2006). Certified lab results from CETV showed that there is a loading removal 

rate from 76% to 94% (from three different states) for TSS (CETV 2000).  Lab results from the 

NJCAT showed that the Stormceptor removes 75% of TSS (NJCAT 2004). Another study done 

in Edmonton, Alberta, installed a Stormceptor in a commercial parking lot and their findings 

showed that the average percent removal rate for TSS was 52.7%, lead was 51.2%, oil and grease 

43.2%, and zinc 39.1% (Imbrium 1996).  

2.10 PCSWMM 

The Stormwater Management Model (SWMM) is a computer software program that was 

originally developed in the 1970’s for the Environmental Protection Agency to simulate rainfall-

runoff quantity and quality in urban and non - urban areas for single or continuous events (Huber 

and Dickenson 1988; Ahyerre et al. 1998; EPA 2012). It has since branched out into a newer 

format known as the Personal Computer version of SWMM (PCSWMM) developed by 

Computational Hydraulic International (CHI). PCSWMM retains the U.S. EPA calculation 

engine, but facilitates data input, output and its visualization using a graphical user interface. 

PCSWMM incorporates low impact development (LID) technologies and BMPs. Engineering 
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and other disciplines use this model as a tool to predict different situations such a quantifying 

pollutant build-up for different land uses, reduction in wash - off load due to BMPS, or even 

direct contribution of rainfall deposition for different storm events (EPA 2012). PCSWMM is an 

economical tool to evaluate, analyze and manage the quantity and quality of urban storm water 

runoff (James et al. 2003). PCSWMM can be used to determine the overall system performance 

and to help identify hydraulic constraints (Cheng et al. 2009). 

Chan et al. (2009) describes the development of the hydraulic model that is based on 

obtaining physical properties of the storm sewer system. The surface runoff functionality of 

PCSWMM is based on user defined attributes from field investigations that are needed for each 

subcatchment. Subcatchment boundaries are delineated after inputting a conveyance collection 

sewer system that is replicated from utility schematic drawings. This set of attributes (i.e. 

diameter, invert elevations, Manning’s n, imperviousness, slope) helps establish the conditions of 

the sewer pipes and sewershed. Some attributes such as Manning’s n use a coefficient table 

where values are selected based on field observation (James et al. 2003). PCSWMM takes into 

consideration various hydrologic processes that produce runoff from urban areas that can also be 

input into each subcatchment’s attributes table to better define the area. The hydrology 

parameters of PCSWMM are time-varying rainfall, evaporation of standing surface water, snow 

accumulation and melting, rainfall interception from depression storage, infiltration of rainfall 

into unsaturated soil layers, percolation of infiltrated water into groundwater layers, interflow 

between groundwater and the drainage system, nonlinear reservoir routing of overland flow 

(James et al. 2003), and the recent addition to PCSWMM are low impact developments (LIDs) 

control options for runoff reduction (Rossman 2010).  
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PCSWMM has a built in time series editor for selecting a design storm to calibrate the 

model or can use a user defined time series that is data collected from a rain gauge (James et al. 

2003). Chan et al. (2009), states that it is imperative that the hydraulic model matches the 

observed data. Observing the real system can be done with the installations of flow meters and 

rain gauges. Vieux and Vieux (2005) discussed how rainfall monitoring is beneficial for the 

purpose of model calibration. In addition, better results are achieved between observed and 

predicted hydrographs when rainfall is representative over the sewershed. In general, however, 

most rain gauges are located in a centralized location and sample rain at distinct points which 

may not be representative of the targeted watershed. It is often preferred that a network of rain 

gauges is used, but a single rain gauge may be sufficient if the sewershed is small. A rain guage 

can become problematic and produce inaccurate measurements. Rain gauge errors include rain 

shadows caused by trees, wind effects, effects caused by heavy rainfall and a tipping bucket type 

of rain gauge is known to under report during heavy rainfall (Vieux and Vieux 2005). 
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Figure 3.1: shows the 37 acre area sewershed and the 2.69 acre area of concern. This map 

shows the boundaries and the sampling locations 

3. METHODOLOGY 

3.1 Site Description 

Field work was conducted in the summer of 2010, at two sites designated the upstream 

(inlet) and downstream (outlet) of the Stormceptor in a 37 acre sewershed that discharges to 

outfall 06. The actual monitored contributing area was 2.69 acre along Rockwell Road within the 

37 acres sewershed (Figure 3.1).  
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Figure 3.1 shows a complex system of storm sewer pipes. Storm sewer pipes follow specific 

guidelines. BSC uses a concrete pipe (class III)  American Society for Testing and Materials 

(ASTM) C 478, which meets standards for precast reinforced concrete manhole sections to make 

sure it is uniform and reliable. The profile has gasket joints that conform to ASTM C443, which 

indicates that the joints are reliable for circular sewer pipes using rubber gaskets (Cretex 

Company 2001). In general, older sewers have pipes made out of concrete material and newer 

and smaller (< 6 inches) pipes are made out of polyvinyl chloride (PVC). Pipe sizes on BSC 

range from 4 – 40 inches in diameter (BSC Stormwater Management Plan 2008) to 

accommodate the flow. 

With the onset of rainfall the runoff begins east on Rockwell Road and flows towards the 

west direction and eventually ends in Scajaquada Creek where the outfall discharges all the 

runoff from the 37 acre sewershed. For this research the downstream boundary is the outlet 

draining the 2.69 acre area. As the surface runoff flows down Rockwell Road it enters 17 

catchbasins from four distinct land use areas (i.e. roads) prior to reaching the pipe leading to the 

Stormceptor. To determine the influent and effluent concentration of pollutants samples were 

retrieved upstream from the Stormceptor in the inlet of manhole #230 and from the outlet of the 

manhole designated Stormceptor. One lane on Rockwell Road was temporarily shut down and 

rerouted during sampling for safety precautions (Figure 3.2). 

 
Figure 3.2: Rockwell Road upstream and downstream (left side) of Stormceptor. This is 

a two lane road in both directions. One lane is blocked off so sampling can be performed 

since both the upstream and downstream sites are located on the road. 
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The land uses within the 2.69 acre area consist of parking lots, asphalt roads, lawns, and 

roofs. Each of these land uses potentially contributes certain pollutants to stormwater runoff. 

Parking lots have more oil and grease associated with the parked cars. There is also a smoke 

stack located in the study area that burns number 6 fuel that potentially can be a source of 

atmospheric fallout. There are also numerous elevator oil tanks throughout the campus that are 

monitored on a monthly basis for leaks as a safety measure to prevent oil and grease from 

reaching the catchbasins (BSC Stormwater Management Plan 2008). Impervious areas such as 

roads and roofs can generate higher concentrations of lead and other heavy metals. Rockwell 

Road consistently had an abundant amount of white lather of soapy bubbles on the road 

(detergents) when it rained. 

Lawn areas are more prone to nutrient runoff due to vegetation. Fertilization is a major 

contributor to poor water quality that causes eutrophication due to leaching or runoff into 

Scajaquada Creek. BSC applies fertilization with an average of 168 lbs of phosphorus and 1249 

lbs of nitrogen being applied in the summer and spring semester. Only heavy trafficked playing 

fields such as football fields are fertilized, but there are exceptions. In 2009 BSC renovated 

Rockwell Road by adding new roads and new curb banks which modified the soils. Fertilization 

was applied to these soils to rejuvenate the grass and the fertilized area is part of the study area.  

As illustrated in Figure 3.3 there is only one rooftop that drains into this sewershed, one 

major parking lot and there is on-street parking all along Rockwell Road. The median has a strip 

of vegetation and random patches of grass areas and the impervious areas are the sidewalks and 

the road. In the presence of rainfall pollutants from these surfaces become part of the stormwater 

runoff. 
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Figure 3.3: BSC land uses in study area 

3.1.1 Sampling Considerations and Variable Flow Rates 

Once the surface runoff flows into the catchbasins and reaches the municipal separate 

storm sewer system (MS4) it travels at variable rates. The upstream and downstream sites are 

approximately 30 feet apart and if it there is a low intensity rainfall then the flow is delayed 

downstream in the pipes, which affects the time interval of sampling. Low intensity rainfall is 

problematic because sampling may not occur at all since there is not enough flow to retrieve a 

grab sample. Also, sediment that is settled at the bottom of the storm sewer pipe may become 

resuspended, when using a grab pole to collect a water sample under low flow conditions. High 

rainfall intensities also can be problematic since the Stormceptor cannot handle large volumes of 

water and most water will go over a weir and the runoff will not be treated (system by-pass). To 

actually determine if the Stormceptor is an effective BMP it is ideal to have a range of different 

types of rain events. 
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3.1.2 Flow Meter 

To determine the flow rate in the sewer system a Sigma 910 flow meter was installed on 

06/01/10 at 4:40 pm on Rockwell Road, inside of a manhole in the same location as the upstream 

site (Figure 3.4). The installation was done by the maintenance crew of the Environmental 

Health and Safety Office using a harness to get lowered inside of the manhole. A Confined 

Space Four Gas Meter Rae Systems QRae + PGM 2000 (serial number 150-509736) was utilized 

to measure the air emission of toxic levels of chemicals that included carbon monoxide, 

hydrogen sulfide, lower exposure limit for flammables and oxygen levels before proceeding into 

the manhole. 

  
flowmeterdirectory.com 

 

The velocity depth sensor was placed at the bottom of the pipe and the data logger was chained t  

The velocity depth sensor must be located on a flat surface inside of the pipe so the 

runoff can submerge the sensor to receive a reading. The velocity sensor has an accuracy of +/- 

2% reading and a +/- 0.20% full scale flow.  The percentage of full scale means the flow meter 

Figure 3.4: Sigma 910 Flow Meter Installation. A 7.8 lbs, 4.5in x 17.625in Sigma 910 flow 

meter was installed inside manhole #230 on Rockwell Road using a harness apparatus to 

lower maintenance crew inside the manhole. 

http://www.google.com/imgres?imgurl=http://www.flowmeterdirectory.com/images/flowmeter_open_channel_wastewatercanada_hach_sigma_910av_01.jpg&imgrefurl=http://www.flowmeterdirectory.com/flowmeter_open_channel_wastewatercanada.html&usg=__8OIt1L3tEvhIW4Tw0XgMxn-hjMk=&h=125&w=248&sz=7&hl=en&start=3&zoom=0&um=1&itbs=1&tbnid=dtPdtFBpkwZpCM:&tbnh=56&tbnw=111&prev=/images?q=flowmeter+sigma+910&um=1&hl=en&sa=N&rls=com.microsoft:*&tbs=isch:1&ei=vWJxTaS8JIaztwf98sGXDw


36 
 

www.hach.com 

 

 

absolute error will rise as the measured flow rate drops. In other words if it is a low intensity rain 

event less runoff is flowing over the velocity sensor and that makes the reading less accurate. 

In order for the flow meter to communicate data to the field laptop (Figure 3.5) a 

software program called Insight® Data Analysis had to be downloaded to the laptop. The 

program was self-installed and programmed following the Sigma Flow Meter Models 910 & 920 

Edition 11 User Manual (http://www.hachflow.com). After setup, a trial run was established to 

determine if the flow meter was communicating correctly. The depth of flow was 0.78 inches, 

the total volume inside of the 36” pipe was 44 gallons, and the velocity of flow was 0.14 feet per 

second. The first trial run was successful based on observed inspection and because data values 

were being recorded. To retrieve the data from the flow meter on a weekly basis an RS232 port 

had to be connected to the laptop and flow meter. The 6.0v battery that powered the meter had to 

be changed out every 1-2 weeks or data would be lost. 

 

Figure 3.5: Setup of flow meter communicating with laptop. 
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3.2 Flow Meter Data 

The flow meter was used to record flow in five time steps and the data were downloaded 

to a laptop on a weekly basis.  On the seventh day of every week a team of two went out to 

Rockwell Road and barricaded the road as a safety precaution to access the manhole where the 

flow meter was located. The InSight software receives the data from the flow meter, including 

the time data was downloaded, the flow in cubic feet per second, velocity in feet per second, the 

depth of flow in inches, the total volume in gallons and the battery life (Figure 3.6). This data 

was then plotted on a graph time vs. flow (discussed in more detail in Chapter 4). 

 

Figure 3.6: Downloading flow meter data. The flow meter was connected to 

 the laptop using a communication cable to retrieve data. 

 

3.3 Monitoring Sampling Protocol 

In order to detect water pollutants in the surface runoff water quality samples needed to 

be collected and analyzed. The benefit of the analysis was twofold as it will help conclude what 

types of pollutants are in the runoff and how well the Stormceptor is performing (a measure used 
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for percent removal rate). Samples can be taken during dry or wet weather and this research 

focused on wet weather. To prevent sampling errors (i.e. cross contamination, bacteria 

multiplication, stirring up bottom sediment) and ensuring the samples are representative of the 

stormwater runoff there are sampling guidelines the EPA has established. The major criterion to 

taking a water sample is making sure there is enough rainfall to collect a sample. There has to be 

a rainfall depth of at least 0.1 inches of rainfall. To standardized antecedent conditions a 72 hour 

dry weather period was required in order to initiate sampling. The Stormceptor’s manufacturer 

Rinker has proposed that there should be 6 storm events sampled (ideally 15) to get a range of 

conditions and to determine its effectiveness, while Erickson et al. (2010) suggest two or more 

rainy seasons should be monitored. 

To make sure the water samples are representative there should not be a variance of more 

than 50% for the average rain depth and duration (EPA 1992).  The duration of the storm event is 

important to produce enough samples and can be broken down into time intervals. After there is 

enough rainfall a sampling method has to be used to collect a sample for the influent and 

effluent. Grab or composite samples can be collected either manually or automatically. Grab 

sampling represents a discrete water sample for that given time interval and then analyzed 

separately whereas a composite sample combines all the water samples for each interval 

(Minkkinen and Esbensen 2009). Composite automatic samplers are commonly used because 

they are more representative than a grab sample whereas the grab samples show variability in the 

results.  

Rinker Manufacturer recommends against using grab sampling to assess the performance 

of the Stormceptor. However, there are certain water pollutants that necessarily cannot be 

observed using an automatic sampler such as oil and grease because of its chemical properties. 
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Using an automatic sampler can be difficult to install, complex to operate and expensive (Lee et 

al. 2007). Automatic samplers also are not sterile and can produce E.coli contamination. Manual 

grab samples are easy to collect and can be collected in the most confined spaces and do not need 

a computer or battery to operate. The discreteness of a grab samples can determine the 

concentration of the water pollutant at a particular time. This can be beneficial to determine how 

often samples should be taken in a given storm event. These water quality samples are used in 

conjunction with other methods to determine the performance of the Stormceptor. 

3.3.1 Sampling Procedures 

For each sample a 22 foot Nasco Swing Sampler (grab pole) was used to collect 1000ml 

of stormwater. The water samples were analyzed for nitrate, phosphorous, lead, zinc, TSS, 

E.coli, detergents, oil and grease. For quality assurance, guidelines established by the EPA under 

section code 40 CFR 265.92 were used for collecting water samples and monitoring the project. 

Proper protection equipment was used for collecting samples which included a safety vest, rain 

coat, latex gloves, and boots ( Figure 3.7). To proceed with sampling the attached bottle on the 

Nasco Swing Sampler was rinsed three times with the stormwater runoff to condition the bottle 

and on the fourth time a sample was taken at a 45 degree angle on the surface of the runoff, 

being very careful to not scrape the bottom of the pipe where the particulate bound pollutants 

settle.  
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Figure 3.7: Wet weather sampling upstream at the inlet in manhole #230. A team of 

students assisted in collecting water samples for various time intervals.The 22 foot Nasco 

Sampler was used to collect the 15min interval sample for oil and grease on Rockwell Road. 

 

The sample in the attached bottle on the grab pole was transferred to two different types 

of sample bottles either a glass amber bottle or a plastic bottle depending on the type of 

pollutants to be tested (Figure 3.8). The amber glass bottle was used for oil and grease samples. 

The amber bottle blocks out sunlight which can break down the oil and grease particles in the 

stormwater. This particular container is also used because oil and grease typically binds to plastic 

whereas it does not bind to glass. The amber bottles were filled to the neck approximately, 700 

ml for analysis. The other plastic sampling bottle was used for all other pollutants. Two 50 ml 

plastic bottles were used to analyze for lead and zinc and a 1000 ml plastic bottle was used to 

analyze for each of the following pollutants: E. coli, nitrate, phosphorus, lead, zinc, detergents, 

and TSS in the stormwater runoff. 
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Figure 3.8: Transfer of sample. Attached bottled was transferred over to sample bottle 

until it was filled to 1000ml. While one student holds the nasco sampler the other student 

pours it into the sample bottle and another student preps the bottle. 

 

Sampling was done at various time intervals during four different wet weather events 

with a minimum of 0.25 inches of rainfall (for this study) to collect stormwater runoff samples 

(Figure 3.9).  The sample time intervals varied depending on the duration of the storm event but 

ideally the aim was to collect water samples every 15 minutes for the first hour then every hour 

afterwards for a total duration of two hours (time intervals of 15,30,45,60,120,180 minutes).  

The time intervals are significant because the first 15 minutes of the start of rainfall is 

considered the first flush. Over time the rain eventually dilutes the pollutants so the 

concentration towards the end of the intervals is small which is why it is important to collect 

samples throughout the whole rain event to account for the different ranges of pollutant 

concentrations. During the sampling of the four rain events, rainfall was unpredictable so not all 

the time intervals were utilized; sometimes rainfall only lasted for 45 minutes and others for 180 

minutes. Due to time constraints, budget, and the difficult location of the Stormceptor (parked 

cars can sometimes blocked the roadway access) sampling was limited. Testing for lead, zinc, oil 

and grease was not taken at every time interval due to budget constraints.  
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Samples were labeled with the appropriate chain of custody and placed on ice in a cooler 

for preservation. The same process was done for the site downstream of the Stormceptor. 
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A  B 

 

                               C 

Figure 3.9: Stormceptor views. A.Schematic of Stormceptor looking down.This shows the 

runoff coming into the Stormceptor and flowing down the drop pipe and reemerging at the 

riser pipe and flowing out the outlet pipe. The red star indicates where the sample was 

taken.  Samples were taken as the water entered the outlet pipe. B. Actual picture of 

Stormceptor looking down.C. Side profile of Stormceptor. 
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3.4 Pollutant Analysis 

After samples were collected, analysis of nitrate, phosphorus, E.coli, detergent, and TSS 

was done in the Water Quality Lab in the Geography Department at BSC by the same party who 

took the water samples. Lead, zinc, oil and grease were analyzed by Waste Stream Technology 

Inc. (WST), in Buffalo, New York, which is a certified lab by NYSDOH ELAP # 11179, 

NJDEPE # 73977, PADEP # 68757, CTDPH #PH-0306, MADEP #M-NY068 and FLDOH # 

E87662. 

3.4.1 E.Coli 

To determine the levels of E.coli in the surface runoff 1 ml of unfiltered stormwater was 

used from the 1000ml stormwater sample and poured into a Coliscan Easygel ® vial (a medium) 

that is a product of Micrology Labs (http://www.micrologylabs.com). The Coliscan Easygel ® is 

not a standard method for measuring E.coli, but is approved by the EPA for compliance 

monitoring (http://micrologylabs.mennonite.net/:/WordDocs/wendelkin%20letter.pdf). Irvine et 

al. (2011) showed that Coliscan results match well with standard membrane filtration done by a 

certified lab. The mixed solution was then placed into a petri dish and incubated for 48 hours at 

room temperature. Afterwards each E.coli (purple dot) was counted in the petri dish to determine 

how many colonies per 1 ml were in the stormwater for that given storm event. 

3.4.2 Total Suspended Solids 

TSS was analyzed by weighing a membrane filter to get the beginning tare weight. The 

filter was placed using forceps in a filter holder in a flask. The sediment in the 1000ml bottle was 

resuspended by shaking it in a figure eight motion and pouring 500 ml into the filter holder 

reservoir. The filter with the sediment particles was then placed in a Tyson oven for one hour to 

dry the filter at 105 degrees Celsius and the dry membrane filter was placed in a desiccator for 
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cooling before being reweighed for a final gross weight. The difference between the beginning 

tare weight and the final gross weight is the TSS concentration.  

3.4.3 Nutrients and Detergents 

The filtered stormwater from the TSS sample was used for nitrate, phosphorus and 

detergent analysis. To determine the concentration of nitrate, 5 ml of filtered stormwater was 

used and a nitrate reagent packet was poured into a test tube with the filtered water. The reagent 

changes to a particular color, once it is reconstituted, from clear to orange. The higher the 

concentration the darker the orange color. The reconstituted test tube was placed inside a Hanna 

C 200 Mulitparameter Bench Photometer, with the nitrate setting on for analysis. After five 

minutes the instrument detects the nitrate concentration. Nitrate results were reported in nitrate- 

nitrogen by using a simple conversion (multiplying by 4.43). The same instrument and similar 

procedure was used to determine the concentration of phosphorous in the surface water. This 

time 10 ml of filtered water was used and reconstituted with a phosphorus reagent packet where 

the contents turns from clear to dark shades of blue based on the concentration. These procedures 

were followed using the Hanna Instrument Manual C 99 and C 200 HI 83000 Series Photometer. 

Analyses for detergents were done by using 5 ml of filtered stormwater and pouring a 

detergent reagent ampoule into a reaction tube using a CHEMetrics, Inc. test kit. The 

reconstituted solution turns different shades of blue based on the concentration found in the 

stormwater. Another ampoule is placed inside the reaction tube to draw up the contents. The 

ampoule is then placed inside of a comparator (colormatrix visual scale kit) that measures 

detergent concentration from a range of 0 – 3 ppm. Each value on the sliding scale corresponds 

to eight different shades of blue that is also found on the sliding scale. The comparator is rotated 

until the shade on the comparator matches the shade in the ampoule. This was done following 
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procedures from the Detergents CHEMets Kit K-9400 instructions (http://www.chemetrics.com). 

If the concentration of the detergents found in the stormwater was higher than the maximum 

reading of 3 ppm then a dilution factor had to be used. This was the exact case for Storm Event 2 

during the first peak when the measurement was off the scale. Instead of 5 ml a 1 ml water 

sample had to be used and be diluted with 4 ml of dionized water, therefore there was a 1:4 

dilution factor used.  

3.4.4 Metals, Oil and Grease 

To test for lead and zinc WST followed the EPA 6000/7000 Series Methods, specifically 

EPA 6010B, which is used to test for hazardous wastes using advanced analytical 

instrumentation and techniques (i.e. inductively coupled plasma – mass spectrometry). The 1000 

ml water sample bottle was transferred into two 50 ml plastic bottles one for lead and the other 

for zinc and each contained HN03 as a preservative for analysis. These methods have a minimum 

detection limit of 0.015 mg/l for lead and 0.013 mg/l for zinc.  

Oil and grease in the stormwater was analyzed using EPA 1664A (Revision A on 

February 1999) method. The sample is extracted using n- hexane and gravimetric analysis, with a 

minimum detection limit of 5.0 mg/l is the done. The sample amber glass bottle contained a 

H2S04 as a preservative. 

3.5 Stormwater Modeling  

In order to model the stormwater runoff from the 2.69 acre sewershed on Rockwell Road 

a program called Stormwater Management Model (PCSWMM) version 5.043 was used. 

Information about the sewershed that is needed to run the model includes sewer lines and 

catchbasin location. This information was obtained using blueprints of utility lines and field 

verification. Land surveying was done to determine the elevation and rim to inverts for the 

http://www.chemetrics.com/
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catchbasins. This information shows how the sewer lines slope. To figure out how the water 

drains into each catchbasin, field verification was done to determine the aspect on the land 

slopes. This step was imperative to creating subcatchments for the sewershed. All of these steps 

were done by previous student assistants working for the Department of Environmental Health 

and Safety Office.  

3.5.1 Rainfall 

Another important attribute required for the model is rainfall data.  Rainfall data is used 

to determine the time series in PCSWMM and is the most important characteristic for generating 

runoff. Rainfall data was collected using a Davis Vantage Pro Plus 6161C (cabled not wireless) 

Tipping Bucket Rain Gauge (Figure 3.10) from 06/2010 – 10/2010, which is located on the 

Classroom Building rooftop on BSC. The data is automatically programmed to communicate to a 

desktop computer in the Classroom Building Meteorology Lab at BSC using a software program 

called Weatherlink 5.8.0 where data is recorded in one hour increments. The tipping bucket 

operates when precipitation enters the collection orfice where it fills the calibrated tipping bucket 

section. Once the calibrated amount (0.01” per tip for this model) has been collected the bucket 

tips, emptying the water and sending an electrical signal to the recorder 

(http://www.omega.com). The accuracy for this model is +0.01inches and rainfall rates up to two 

inches per hour (rainfall in this case study never exceeded 2”) and it measures a rain depth from 

0-199.99” (http://www.davisnet.com). The rainfall data was also used to create a hydrograph as a 

visual inspection to determine if the flow data from the flow meter was similar to the rain data.  

http://www.omega.com/
http://www.davisnet.com/
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Figure 3.10: Davids Vantage Pro Tipping Bucket Rain Gauge 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.ifamilysoftware.co/
http://www.bing.com/images/search?q=davis+vantage+pro+6161C+tipping+bucket&view=detail&id=ABE7BA17CCDFF3FA235CD1438F93C60FE4F7D16C&first=0&FORM=IDFRIR
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4. RESULTS 

4. 1 Storm Event 1 

The first set of water samples collected on 06/09/10 was a semi-qualifying storm event 

because the antecedent dry period was only 48 hours, while the EPA guidelines typically call for 

a 72 hour antecedent period. Even though this was a short rainfall event, approximately lasting 

from 11:43 to 13:25 that accumulated 0.10 inches of rainfall, there was enough flow to sample.  

Due to the short duration of rainfall only four samples were taken instead of the recommended 

10 samples and only two time intervals were used: 15 and 30 minutes, for collecting samples. 

Figure 4.1 shows when the samples were collected and the corresponding flow. There was 0.048 

cfs of water recorded by the Sigma 910 Flow Meter during sampling at the 15 minute interval. 

As the rainfall slowed down so did the flow at the 30 minute sampling interval with the flow rate 

being 0.013cfs. For this particular storm event the water samples were analyzed for conventional 

parameters that included TSS, nitrate, phosphorous, E.coli, detergent, oil and grease (it should be 

noted that E.coli, oil and grease was only tested for the first 15 minutes due to budget constraints 

for this particular storm event). The pH of the stormwater was also measured and was neutral at 

7.44.   
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Figure 4.1: Flow data for Storm Event 1. This graph shows the flow data in cfs from the 

time sampling began and ended on 06/09/10 in 15 minute increments.  
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4.1.1 E.coli Results 

 An influent and effluent sample was taken at 11:43 and 12:09 respectfully during the 

first flush to quantify the amount of E.coli present in the stormwater runoff. There were 400 

colonies/100 ml of E.coli in the influent and the effluent contained 0 colonies/100 ml, which is a 

100% reduction in removing E.coli from the runoff using the Stormceptor.   

4.1.2 Detergents Results 

From visual inspection during the first flush the road had a build-up of anionic surfactants 

(detergents), as a white residual substance was highly visible when cars drove through puddles. 

The concentrations of detergents at first 15 minutes were 1.5 mg/l in the influent and 0.25 mg/l 

in the effluent samples that were collected upstream and downstream of the Stormceptor. With a 

flow rate of 0.048 cfs 83% of the detergents were removed. For the 30 minute interval 1 mg/l of 

detergents was detected in the influent and 0.5 mg/l of detergents was in the effluent sample as 

shown in Table 4.1.  

Table 4.1: Detergent Time Variations   

Interval Time Influent Time Effluent Reduction 

minute 

 

mg/l 

 

mg/l % 

15  11:43  1.5  12:09  0.25  83 

30  13:25  1.0  13:58  0.5 50 
 

4.1.3 TSS Results 

The results for TSS for the first storm event were omitted due to technical difficulties 

with lab equipment. 
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4.1.4 Nitrate Results 

Referring to Table 4.2 nitrate in the influent of the Stormceptor was 20.8 mg/l while the 

effluent was 1.3 mg/l during the first 15 minutes, a 94% reduction. At the 30 minute interval the 

influent had 14.2 mg/l of nitrate and 0.9 mg/l of nitrate was detected in the effluent downstream 

of the Stormceptor. This showed the Stormceptor removed 94% of nitrate from the runoff.   

Table 4.2: Nitrate Time Variations   

Interval Time Influent Time Effluent Reduction 

minute 

 

mg/l 

 

mg/l % 

15  11:43  20.8 12:09  1.3 94 

30  13:25  14.2 13:58  0.9 94 

  

4.1.5 Phosphorus Results 

Table 4.3 shows during the first flush the influent had 0.5 mg/l of phosphorus and the 

effluent had 2.3 mg/l of phosphorous. There was no reduction in phosphorus. For the next 

sampling round there was 0.1 mg/l of phosphorus detected in the influent and 0.0 mg/l was 

detected in the effluent sample, a 100% reduction.  

Table 4.3: Phosphorus Time Variations   

Interval  Time Influent Time Effluent Reduction 

minute 

 

mg/l 

 

mg/l % 

15  11:43  0.5  12:09  2.3  None 

30  13:25  0.1  13:58  0.0  100 
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4.1.6 Oil and Grease Results 

The lab report (from WST) showed that there was non-detection in the influent and 

effluent sample collected upstream and downstream of the stormceptor during the first 15 

minutes of the rain event. In case of non-detect, one half of the MDL was used to represent a 

value (MDL for oil and grease is 5 mg/l, one half of the MDL is 2.5 mg/l). 

4.2 Storm Event 2 

The second wet weather sampling took place a month later on 07/09/10. There was a 72 

hour antecedent period and the event had a total rainfall of 0.52 inches with an approximate peak 

flow rate of 1.0 cfs (Figure 4.2) during the sampling times from 10:26 until 14:45. The following 

analytes were sampled during this rain event: E.coli, detergents, TSS, nitrate, phosphorous, oil 

and grease. Metals were included in this sampling event because a budget was available during 

this time to send the samples to WST. These metals included lead and zinc and were tested only 

once at random time intervals.  For quality assurance and quality control a duplicate sample was 

taken for analysis of nitrate, lead, zinc, oil and grease. This particular storm event had two peak 

intensity periods that were categorized into two separate sampling events: first peak and second 

peak. During the first peak there was a high intensity rainfall during the first 15 minutes starting 

at 10:26 am and ending around 10:45 am. It was important to catch the first flush (15 minutes) in 

this event because this is where the highest concentration of pollutants can be obscured. The 

second peak rainfall started back up again at 13:30 and lasted until 14:45. Sampling occurred 

over a longer period of time, with samples collected at: 15, 30, 45, 60, and 90 minutes. 



54 
 

        

 

Figure 2.2: Flow data for Storm Event 2. This graph shows the flow data starting from 

13:00 to 15:00 in 15 minute increments when sampling began and end on 07/09/10. 
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4.2.1 E.coli Results 

The first peak event sampling showed that there were 4,300 colonies/100 ml of E.coli in 

the effluent. The team could not mobilize quickly enough and it was noticeable that the rain was 

coming to a halt, so the decision was made to collect a sample downstream of the Stormceptor 

rather than upstream. The second peak rain event showed inconsistency between the influent and 

effluent samples. Table 4.4 shows that the first sample had the highest levels of E.coli  of 3,700 

colonies/100 ml detected in the influent and 2,900 colonies/100 ml in the effluent. This was a 

22% removal of E.coli from the system. The 30 minute interval sample from the upstream site 

had a 60% reduction in the amount of E.coli in the influent compared to the first sample. There 

was also a 7.7% reduction in the removal of E.coli for the 90 minute sampling time. The 

inconsistencies started at the 45 minute interval where there were higher levels of E.coli in the 

effluent than in the influent samples and overall the levels started to increase rather than decrease 

in the effluent samples. There was a large discrepancy at the 60 minute interval where there was 

500 colonies/100 ml of E.coli detected in the influent and 3,500 colonies/100ml of E.coli in the 

effluent. This is a 600% increase of E.coli in the effluent and a 20% increase of E.coli from the 

first flush in the effluent. There was a rather steady decrease in the influent until the last 

sampling round where it increased to a level almost similar to the first flush with 2,600 

colonies/100ml of E.coli.  
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Table 4.4: E.coli Time Variations   

 Interval  Time Influent Effluent Reduction 

minute 

 

c/ 100 ml c/ 100 ml % 

15  13:30 3700 2900 22 

30  13:45 1500 1300 60 

45  14:00 1000 1700 None 

60  14:15 500 3500 None 

90  14:45 2600 2400 7.7 

 

4.2.2 Detergents Results 

 The first peak rain event showed the concentrations were higher than the maximum 

reading on the comparator testing kit of 3.0 ppm (mg/l), but with the dilution factor in place the 

concentration was 7.5 mg/l in the influent and no samples were collected downstream of the 

Stormceptor.  For the second peak rain event analysis conducted upstream of the Stormceptor 

showed there was 1.25 mg/l of detergents in the influent and 0.5 mg/l in the effluent during the 

first 15 minutes, a 60% reduction. 

4.2.3 TSS Results  

TSS was analyzed at every time interval. The results during the first peak rain event 

showed 41 mg/l of TSS in the influent and there was no samples collected downstream of the 

Stormceptor during the first peak because the rain came to a halt. For the second peak rain event 

the results indicated (Table 4.5) that there were fairly low concentrations. The first sample had 

the highest concentration in the influent (186 mg/l) and effluent (719.6 mg/l), a 287 % increase. 

The 30 minute interval of sampling showed the same fluctuations between the influent and 

effluent concentrations, for which there was a 222% increase in the effluent concentration. 
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Comparing the 30 minute interval to the first flush influent there was a 73% reduction in a matter 

of 15 minutes. Likewise, comparing the 30 minute interval to the first flush effluent there was a 

77% reduction of TSS that was being removed from the Stormceptor. After 45 minutes of 

sampling the TSS was still decreasing over time in the influent samples, with 27.8 mg/l detected 

in the runoff. The effluent sample also had decreased compared to the first two samples with 60 

mg/l of TSS in the effluent. The 60 minute interval had a slight increase of TSS in the influent 

but overall there was a 48% reduction of TSS being removed by the Stormceptor. The 90 minute 

sampling round there was 7 mg/l in the influent which is a 96% reduction rate from what the first 

flush sample was at 186 mg /l. There was a 98% reduction rate in the effluent from when 

sampling first started at the first peak. When comparing the influent and effluent at the 90 minute 

interval there was a 68% increase of TSS.  

Table 4.5: TSS Time Variations                                             

Interval  Time Influent Effluent 

minute 

 

mg/l mg/l 

15  13:30 186 719.6 

30  13:45 50.2 161.4 

45  14:00 27.8 60 

60  14:15 28.6 14 

90  14:45 7.0 11.8 

 

4.2.4 Nitrate Results 

 

For the first peak rain event there was 7.9 mg/l of nitrate at the influent, but no sample 

was collected at the downstream site. Table 4.6 shows the percent reduction for nitrate. For the 

second peak rain event the results showed that at the 15 minute interval there was 10.2 mg/l 

detected  in the influent and 0 mg/l detected in the effluent. During the 30 minute interval there 
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was no nitrate coming into the system, but there was 2.2 mg/l leaving the system, and similarly 

for the 45 minute interval there was lower nitrate (1.3 mg/l) coming into the system and more 

nitrate leaving the system (4 mg/l). The 60 minute interval of sampling had the highest level of 

concentrations of nitrate with 10.6 mg/l in the influent, which is 0.4mg/l higher than the first 

flush, and 5.8 mg/l in the effluent. The last sample taken upstream of the Stormceptor had 8.4 

mg/l of nitrate coming into the system (a random triplicate sample was also collected upstream) 

and due to instrument error there were no results for the effluent sample. 

Table 4.6: Nitrate Time Variations   

 Interval  Time Influent Effluent Reduction 

minute 

 

mg/l mg/l % 

15  13:30 10.2 0.0 100 

30  13:45 0.0 2.2 None 

45  14:00 1.3 4 None 

60  14:15 10.6 5.8 46 

90  14:45 8.4 SA None 

SA= Instrument Error 

4.2.5 Phosphorus Results 

The results for phosphorus were consistently higher at the downstream site than at the 

upstream site. The first peak rain event showed that there was 0.8 mg/l of phosphorus in the 

influent and there was no water sample collected downstream of the Stormceptor. Table 4.7 

shows the first sample of the second peak had 0.7 mg/l of phosphorus in the influent and 1.1 mg/l 

of phosphorus in the effluent samples, which resulted in a 57% increase of phosphorus at the 

downstream site. At the 30 minute time interval there was a higher concentration in the effluent 

(1.7 mg/l) compared to the first sample with only 1.1 mg/l in the effluent. This time interval also 

showed an increase in phosphorus in the effluent by 240%. The 45 minute interval had the same 
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concentration of 0.1 mg/l of phosphorus coming in to and leaving the system. The 60 minute 

interval had a 66% increase in phosphorus. The last sampling round had instrumentation errors 

for both the influent and effluent samples. 

Table 4.7: Phosphorus Time Variations  

 Interval  Time Influent Effluent Reduction 

minute 

 

mg/l mg/l % 

15  13:30 0.7 1.1 None 

30  13:45 0.5 1.7 None 

45  14:00 0.1 0.1 0 

60  14:15 0.3 0.5 None 

90 14:45  SA SA  None 
SA= instrument error 

4.2.6 Oil and Grease Results 

There were a total of four water samples collected and delivered to WST for oil and 

grease analysis in the runoff. This included taking a sample during the first peak rain even which 

resulted in 7.1 mg/ l of oil and grease in the influent and no samples were collected at the 

downstream site. During the second peak rain event another water sample was taken at the 90 

minute interval which resulted in 24.8 mg/l of oil and grease in the influent and 11.1 mg/l in the 

effluent. A duplicate sample was also collected which is discussed in the QA/QC section. With a 

flow rate of 0.21 cfs at the 90 minute interval (14:45) 55% of oil and grease was removed by the 

Stormceptor.  

4.2.7 Lead Results 

Water samples for lead analysis were only taken during the 90 minute interval of the 

second peak rain event and included a duplicate sample. There was a non-detection (<0.015 

mg/l) of lead in the influent, effluent and the duplicate sample. These samples were also 

collected as the rain event was ending and there was not much flow. 
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4.2.8 Zinc Results 

To analyze for zinc in the runoff a sample was taken during the first peak rain event and 

during the second peak rain event only at the 90 minute time and this too included a duplicate 

sample. The first peak event findings showed that zinc was not detected because the 

concentration was less than the MDL of 0.013mg/l in the influent and there were no water 

samples collected downstream of the site. Half of the MDL was calculated to get a value of 

0.00065 mg/l for the influent sample. The results at the 90 minute interval were 0.03 mg/l in the 

influent and 0.043 mg/l in the effluent.  

4.3 Storm Event 3 

The third rain event took place on 09/16/10 with a magnitude of 0.28 inches of rain and a 

peak flow rate of 0.77 cfs (Figure 4. 3) that started at 09:15 and ended at 13:15. This was a 

qualifying storm event because all the requirements were met under the EPA guidelines 

including a 72 hour antecedent period. Water samples were collected every 15 minutes for the 

first hour and then more samples were collected for the 120 and 180 minute interval, which is 

very different from the first storm event. The change of time intervals was due to the duration of 

the rain event itself. The water samples were analyzed for E.coli, TSS, nitrate, phosphorus, oil 

and grease, lead, and zinc. 
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Figure 4.3: Flow data for Storm Event 3.This graph illustrates the flow associated with the 

rainfall over a 5 hour period. 
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4.3.1 E.coli Results 

This storm event had the highest levels of E.coli in the stormwater runoff. The first flush 

was comparatively high, but not the highest with 6,000 colonies/100 ml detected in the influent 

and 15,300 colonies/100 ml in the effluent (Table 4.8). The first flush only had a flow rate of 

0.009 cfs as this was the onset of the storm event. As the storm started picking up with a flow 

rate of 0.07 cfs the water sample taken at the 30 minute interval had no effluent reduction in 

E.coli with 1,500 colonies/100 ml in the influent and 27,300 colonies/100 ml in the effluent. 

Water samples taken at the 45 minute interval did show an 8.7% reduction in E.coli with 15,000 

colonies/100ml in the influent and 13,700 colonies/100ml in the effluent. The flow rate had 

doubled by the time it reached the 45 minute interval. At the 60 minute interval there was 

approximately equal level E.coli in the influent (7,300 colonies/100ml) and effluent (7,900 

colonies/100 ml). There was a 58% reduction with a flow rate of 0.191 cfs for the 120 minute 

interval with 2,600 colonies/100 ml in the influent and 1,100 colonies/100 ml in the effluent. The 

last sampling round had the least amount of E.coli in the runoff. As the storm concluded the 

influent had 1,200 colonies/100 ml and the effluent had 1,600 colonies/100ml. 

Table 4.8: E.coli Time Variations     

Interval  Time Influent Effluent Reduction 

minute 
 

c/100 ml c/100 ml % 

15  09:15 6000 15300 None 

30  09:30 1500 27300 None 

45  09:45 15000 13700 8.7 

60  10:00 7300 7900 None 

120  12:15 2600 1100 58 

180  13:15 1200 1600 None 
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4.3.2 TSS Results 

Referring to Table 4.9 the highest concentration of TSS was during the first flush with 

66.4 mg/l and decreasing to 7.0 mg/l during the last sampling round in the influent.  The 

concentration of TSS started to decrease from a concentration of 66.4 mg/l to 7.0 mg/l with a 

slight increase at the 60 minute interval throughout the course of sampling upstream of the site.  

For the effluent samples, there were points in time that the concentration of TSS was higher than 

the concentration in the influent particularly at the last interval when there was 7 mg/l of TSS in 

the influent and 18.4 mg/l in the effluent. Reductions in concentration of TSS occurred when the 

flow rate was 0.009 cfs during the first flush and had an 83% reduction, during the 45 minute 

sampling interval with 38% reduction when the flow was higher at 0.14 cfs, and during the 60 

minute sampling interval with a 15% reduction when the flow rate was 0.07 cfs. 

Table 4.9: TSS Time Variations 

 Interval  Time Influent Effluent Reduction 

minute 

 

mg/l mg/l % 

15  09:15 66.4 11.2 83 

30  09:30 16.8 25.2 None 

45  09:45 30.8 19.2 38 

60  10:00 36.8 31.2 15 

120  12:15 16.8 25.2 None 

180 13:15 7.0 18.4 None 
 

4.3.3 Nitrate Results 

 Generally, the results were fairly reasonable with respect to the concentration of nitrate 

decreasing over time and the concentration in the effluent being lower than the influent samples 

for each time interval. During the first flush there was 0.0 mg/l of nitrate in the influent and 0.0 

mg/l detected in the effluent. The next round of sampling had the highest concentration of nitrate 

for the event. There was 11 mg/l of nitrate in the influent and 5.8 mg/l of nitrate in the effluent, a 
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48% reduction. The 45 minute interval had 0.0 mg/l of nitrate in the influent and 2.2 mg/l of 

nitrate in the effluent. The sampling results at the 60 minute interval had 5.8 mg/l of nitrate in the 

influent and 0.0 mg/l of nitrate in the effluent. With a flow rate of 0.07 cfs there was a 100% 

removal rate of nitrate from the runoff. The nitrate concentration decreased by 50% during 

the120 minute interval. The 180 minute interval had a 60% reduction in nitrate with a flow rate 

of 0.004 cfs (Table 4.10). 

Table 4.10: Nitrate Time Variations 

 Interval  Time Influent Effluent Reduction 

minute 

 

mg/l mg/l % 

15  09:15 0.0 0.0 0.0 

30  09:30 11.1 5.8 48 

45  09:45 0.0 2.2 None 

60  10:00 5.8 0.0 100 

120  12:15 2.6 1.3 50 

180  13:15 10 4.43 60 

 

4.3.4 Phosphorus Results 

Referring to the Table 4.11 the concentration of phosphorus during the first flush was 

relatively low with no reduction of phosphorus. The samples taken at the 45 and 180 minute 

interval were the only samples that showed a reduction in phosphorus. During the 45 minute 

sampling interval there was 1.9 mg/l of phosphorus in the influent and 0.0 mg/l in the effluent 

samples. At the beginning of the storm event, when the first flow peak of 0.14 cfs was observed, 

the reduction was 100% (45 minute interval). The 180 minute interval had an 80% reduction 

with a small flow rate of 0.004 cfs. 
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Table 4.11: Phosphorus Time Variations   

 Interval  Time Influent Effluent Reduction 

minute 

 

mg/l mg/l % 

15  09:15 0.0 0.6 None 

30  09:30 0.8 1.0 None 

45  09:45 1.9 0.0 100 

60  10:00 0.0 0.7 None 

120  12:15 0.0 0.8 None 

180  13:15 1.0 0.2 80 

 

4.3.5 Oil and Grease Results 

Two water samples from the upstream and downstream site were sent to WST for oil and 

grease analysis for the 15 minute interval only. The results indicated that there was 6.8 mg/l of 

oil and grease in the influent and there was non-detection in the effluent, because there was less 

than 5 mg/l of oil and grease detected in the runoff.  One half of the MDL was calculated, which 

resulted in a 63% reduction in oil and grease. 

4.3.6 Lead Results 

          Four water samples were sent to WST to analyze for lead; two from upstream of the site 

and two from downstream of the site for the 15 and 60 minute interval. There was no detection 

of lead in all four samples that were analyzed. The non-detection value was manipulated to 

calculate a value by taking half of the MDL of 0.015 mg/l for lead which resulted in 0.0075 mg/l 

for each sample.     

 



66 
 

4.3.7 Zinc Results 

Four water samples were delivered to WST for zinc analysis (two from upstream and 

downstream of the site). There were higher concentrations of zinc during the first 15 minutes of 

sampling, where the influent and effluent concentration was 0.166 mg/l and 0.031 mg/l. During 

the 60 minute interval of sampling the amount of zinc found in the runoff decreased from the 

initial start of sampling at the upstream site, which had 0.115 mg/l detected in the influent. Once 

that influent went through the Stormceptor for treatment the amount of zinc went from 0.115 to 

0.088 mg/l, a 23% reduction (Table 4.12). 

Table 4.12: Zinc Time Variations        

Interval  Time Influent Effluent Reduction 

minute 

 

mg/l mg/l % 

15  09:15 0.166 0.031 81 

60  10:00 0.115 0.088 23 

 

4.4 Storm Event 4 

The final sampling round was done on 09/28/2010 with a magnitude of 0.25 inches of 

rain and a peak flow rate of 1.3 cfs (Figure 4.4). This was not considered a qualifying storm 

event under EPA guidelines because it rained the day before so there was no antecedent dry 

period. Sampling was done every 15 minutes for the first hour and then every hour for a total of 

three hours of sampling lasting from 07:39 to 10:24. The water quality parameters that were 

analyzed from the water samples upstream and downstream of the site were E.coli, TSS, nitrate, 

phosphorus, oil and grease, lead, and zinc.  
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Figure 4.4: Flow data for Storm Event 4 
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4.4.1 E.coli Results 

E.coli results are in Table 4.13. The first flush had 1,100 colonies/100 ml of E.coli in the 

influent and 600 colonies/100ml in the effluent, a 45% reduction with a flow rate of 0.22 cfs. The 

samples taken at the 30 minute interval had the highest levels of concentrations with 1,100 

colonies/100 ml in the influent and 1,300 colonies/100 ml in the effluent, which had no 

reduction. After the 30 minute interval the E.coli levels subsided. There was a 12.5% reduction 

during the 45 minute interval and a 55% reduction at the 60 minute interval.  During the 120 

minute interval there was a slight increase of E.coli in the influent with a 55% reduction in the 

effluent. The levels of E.coli during the last sampling round decreased by 22% as the flow rate 

decreased to 0.032 cfs. 

Table 4.13: E.coli Time Variations         

 Interval  Time Influent Effluent Reduction 

minute 

 

c/ 100 ml c/ 100 ml % 

15  07:39 1100 600 45 

30  07:54 1100 1300 None 

45  08:09 800 700 12.5 

60  08:24 900 400 55 

120  09:24 1100 500 55 

180  10:24 900 700 22 
 

4.4.2 TSS Results 

 In Table 4.14 the TSS for the influent samples consistently decreased throughout the 

sampling period while the effluent results fluctuated. Of all the samples taken at each interval the 

15 minute interval was the only one that had a reduction in TSS (50%). The sample taken at the 

15 minute interval also had the highest concentration in the influent with 79.6 mg/l.  The 30 
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minute sampling interval showed a slight decrease in concentration with 67.6 mg/l detected in 

the influent from the previous sample. There was a higher concentration in the effluent that had 

74.4 mg/l than the previous sample which had 39.6 mg/l of TSS. The 30 minute interval also had 

a higher concentration in the effluent than in the influent, a 10% increase of TSS. The results for 

the 45 minute interval were 43.2 mg/l in the influent and 69.6 mg/l in the effluent samples. This 

shows that there was a 61% increase of TSS at the 45 minute sampling interval. The sample 

taken at the 120 minute interval resulted in 28 mg/l of TSS in the influent and 35.6 mg/l of TSS 

was in the effluent. The last sampling round had the lowest concentration in the influent with 

10.4 mg/l and 53.6 mg/l in the effluent, which lead to an 80% increase of TSS. 

Table 4.14: TSS Time Variations        

 Interval  Time Influent Effluent Reduction 

minute 

 

mg/l mg/l % 

15  07:39 79.6 39.6 50 

30  07:54 67.6 74.4 None 

45  08:09 43.2 69.6 None 

60  08:24 38.8 58.4 None 

120  09:24 28 35.6 None 

180  10:24 10.4 53.6 None 
 

4.4.3 Nitrate Results 

The results for nitrate showed favorable outcomes in terms of reduction rates. The 

influent samples seemed to have increased over time while the effluent samples decreased over 

time. The first flush had 0.0 mg/l of nitrate in the influent and the effluent had the highest 

concentration of all the samples taken, with 2.2 mg/l of nitrate. The 30 minute interval had a 50% 

removal rate of nitrate when the flow rate was 1.3 cfs. The samples taken at the 45, 60,120, and 
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180 minute interval all had a 100% reduction. The 60 minute interval sample had the highest 

concentration with 12.8 mg/l of nitrate in the influent. Sampling from 07:39 - 08:24 the 

concentrations appeared to increase in the influent, but managed to decrease during the 120 

minute interval (Table 4.15). 

Table 4.15: Nitrate Time Variations           

 Interval  Time Influent Effluent Reduction 

minute 

 

mg/l mg/l % 

15  07:39 0.0 2.2 None 

30  07:54 0.9 0.4 50 

45  08:09 6.2 0.0 100 

60  08:24 13 0.0 100 

120  09:24 10.6 0.0 100 

180  10:24 6.6 0.0 100 
 

4.4.4 Phosphorus Results 

For this particular storm the results for the phosphorus (Table 4.16) showed the 

Stormceptor was capable of removing phosphorus from the runoff (except during the 120 minute 

interval). The first flush contained the highest concentration in the influent sample with 1.4 mg/l 

and the concentration in the effluent sample had 0.1 mg/l, a 93% reduction. The 30 minute 

interval sample contained the second highest concentration with 0.8 mg/l of nitrate in the influent 

and 0.5 mg/l of nitrate in the effluent with a 38% reduction (the second lowest reduction rate).  

The samples taken at the 45, 60, and 180 minute interval had a 100% reduction in phosphorus 

while the 120 minute had a slight increase in concentration of phosphorus. Even with a flow rate 

of 0.07 cfs after the 60 minute interval the Stormceptor was still effective at removing the 

phosphorus. The concentration did decrease over time upstream of the Stormceptor, but the 60 
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minute interval sample showed an increase from the previous influent sample and then it 

decreased again at the 120 minute interval and slightly increased at the 180 minute interval. 

Table 4.16:  Phosphorus Time Variations         

 Interval  Time Influent Effluent Reduction 

minute 

 

mg/l mg/l % 

15  07:39 1.4 0.1 93 

30  07:54 0.8 0.5 38 

45  08:09 0.1 0.0 100 

60  08:24 0.3 0.0 100 

120  09:24 0.0 0.1 None 

180  10:24 0.1 0.0 100 
 

4.4.5 Oil and Grease Results 

Analysis for oil and grease for the influent and effluent samples was done for the 30 

minute sample time only. The lab report (from WST) showed there was non-detection for oil and 

grease because it was less than 5 mg/l even with a peak flow of 1.3cfs. A calculation was done to 

get a value of 2.5 mg/l for each sample. Even though there was no detection, from visual 

inspection during sampling there was a thin film of grease on top of the water sample collected 

and there was an odor to it. 

4.4.6 Lead Results 

The water samples collected for lead analysis were taken at the 30 minute sample time 

and sent to WST. The lab report showed that there was a 40% reduction in lead. There was 0.048 

mg/l of lead detected in the influent and 0.029 mg/l of lead in the effluent samples. 
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4.4.7 Zinc Results 

Analysis for zinc in the water samples were delivered to WST for the 30 minute interval 

only (influent and effluent). The results for zinc were 0.162 mg/l at the influent and 0.142 mg/l in 

the effluent, a 12.3% reduction. 

4.5 Summary of Event Concentrations 

For legal compliance purposes for each storm event (1-4) the mean concentration was 

taken for all the analytes. To determine if the influent quality could be effectively improved by 

the Stormceptor a percent reduction was calculated for each storm event based on the averages. 

With different rainfall intensities and durations each storm event on 06/09/10, 07/09/10, 09/16/10 

and 09/28/10 was treated separately instead of combined.  For storm event 2, only the second 

peak event data was included instead of the first peak event due to insufficient amount of data.  

4.5.1 Mean Concentration of E.coli  

A geometric mean was used instead of arithmetic mean to represent accurately the level 

of E.coli. Figure 4.5 shows that during the first storm event E.coli levels were higher in the 

influent with 400 colonies/100 ml of E.coli and lower in the effluent with 2 colonies/100 ml of 

E.coli, a 99.5% reduction. This storm event had the lowest levels of E.coli of all the storm 

events. Storm event 2 shows that the influent had lower levels with 1,485 colonies/100 ml of 

E.coli and the effluent had 2,219 colonies/100 ml of E.coli with no reduction. Storm event 3 had 

the highest levels of E.coli with 5,597 colonies/100 ml of E.coli in the influent and 9,626 

colonies/100 ml of E.coli in the effluent and there was no reduction. The last storm event that 

was sampled on 09/28/10 had a 33% removal rate of E.coli with 976 colonies/100 ml of E.coli in 

the influent and 651 colonies/100 ml of E.coli in the effluent. 
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Figure 4.5: Percent Reduction for Geometric Mean E.coli Levels 

4.5.2 Mean Concentration of Detergents 

Only two storm events were used to collect water samples to analyze for detergents, 

06/09/10 and 07/09/10. The arithmetic mean was calculated and the standard error to determine 

how much fluctuation there was in concentration during the sampling round. Both storm events 

showed a percent reduction in the effluent. Referring to Figure 4.6 storm event 1 had a mean 

concentration of 1.25 +/- 0.25 mg/l of detergents in the influent and 0.38 +/- 0.13 mg/l of 

detergents in the effluent. With these concentrations the percent removal of detergents from the 

runoff was 70%. Storm event 2 had fairly similar concentrations with 1.25 +/- 0 mg/l of 

detergents in the influent and 0.50 +/- 0 mg/l of detergents in the effluent, a 60% reduction. 
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Figure 4.6: Percent Reduction for Mean Detergents Concentration 

4.5.3 Mean Concentration of TSS 

 Water samples were collected for TSS analysis for all the storm events, but the first storm 

event was omitted due to lab error. The storm events shown in Figure 4.7 are for 07/09/10 (storm 

event 2), 09/16/10 (storm event 3) and 09/28/10 (storm event 4).  Storm event 2 had the highest 

concentration of TSS. The mean of the five water samples were 59.9 +/- 32.3 mg/l in the influent 

and 193.4 +/- 134.3 mg/l in the effluent. Based on the 6 samples taken for storm event 3 this 

event had the lowest concentration of TSS with 29.1 +/- 8.6 mg/l in the influent and 21.7 +/-2.8 

mg/l in the effluent. The last storm event there was 44.6 +/- 10.4 mg/l of TSS in the influent and 

55.2 +/- 6.4 mg/l of TSS in the effluent.  Even though storm event 3 had the lowest concentration 

of TSS it was the only event that had a reduction in TSS (25.5%). 
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Figure 4.7:  Percent Reduction for Mean TSS concentrations  

 

4.5.4 Mean Concentration of Nitrate 

Water samples were taken for all four storm events to analyze for nitrate. The water 

samples that produced an error where omitted from the mean concentrations calculations. The 

Stormceptor effectively removed the nitrate from the runoff during all four storm events (Figure 

4.8). The minimum reduction rate was during the second storm event that removed 46% of the 

nitrate and the maximum removal rate was during the first storm event that had a 93% reduction 

rate. The second, third, and fourth storm event had comparatively similar mean concentrations in 

the influent, even though there were different rainfall intensities. The mean concentration for the 

first storm event was 4.0 +/- 0.8 mg/l in the influent and 0.3+/- 0.1mg/l in the effluent. There was 

1.3+/- 0.6 mg/l of nitrate in the influent and 0.7 +/- 0.3 mg/l in the effluent during the second 

storm event. The samples that were collected on the third storm event had a mean concentration 

of 1.2 +/- 0.5 mg/l in the influent and a mean of 0.5 +/- 0.2 mg/l in the effluent. The fourth storm 
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event samples in the influent had a mean concentration of 1.2 +/- 0.46 mg/l and the effluent had a 

mean concentration of 0.1 +/- 0.08 mg/l. 

 

Figure 4.8: Percent Reduction for Mean Nitrate Concentrations  

 

4.5.5 Mean Concentration of Phosphorus 

 Sampling during the first two storm events showed no reduction in phosphorus while the 

last two storm events showed the Stormceptor did remove the phosphorus from the runoff 

(Figure 4.9). For the first storm event the influent sample had a lower mean concentration of 

phosphorus at 0.3 +/- 0.2 mg/l than the effluent sample which had a mean of 1.15 +/- 1.15 mg/l, 

a -283 % reduction. The effluent for the first storm event had the highest mean concentration as 

compared to all other storm events, but also had a 1.63 mg/l standard deviation. The second 

storm event on 07/09/2010 had a mean concentration in the influent that once again was lower 

than the effluent; therefore there was a percent increase in phosphorus during this sampling 

period.  The influent had a mean concentration of 0.4 +/- 0.13 mg/l and 0.85 +/- 0.35 mg/l in the 

effluent. The third storm event had an 11% reduction in phosphorus, as the mean concentration 
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in the influent was 0.62 +/- 0.31 mg/l and the effluent sample had a mean of 0.55 +/- 0.15 mg/l. 

The water samples taken during the fourth storm event on 09/28/10 had a 73% reduction in 

concentration of phosphorus which was the highest of all the storm events. This storm event had 

approximately the lowest concentrations in the influent and effluent compared to the other storm 

event samples. The influent had a mean concentration of 0.45 +/- 0.22 mg/l and the effluent had 

a mean concentration of 0.12 +/- 0.08 mg/l.  

 
 

Figure 4.9: Percent Reduction for Mean Phosphorus Concentrations 

 

4.5.6 Concentration of Oil and Grease 

 The water samples were analyzed using the EPA 1664A methods and showed that over 

50% of the samples were less than the MDL of 5 mg/l in oil and grease. For each storm event 

only one set of samples were taken to analyze oil and grease. The first storm event samples had 

non-detections at both the influent and effluent sample. The second storm event on 07/09/10 had 

a 55% reduction of oil and grease (Table 4.17). This event had higher concentrations than any 

other storm event sample. The samples collected upstream and downstream of the Stormceptor 
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had a concentration of 24.8 mg/l in the influent and 11.1 mg/l in the effluent. The third event on 

09/16/10 had 6.8 mg/l of oil and grease detected in the influent and non-detection in the effluent. 

The last storm event had non-detections for both influent and effluent samples. 

Table 4.17: Oil and Grease Concentrations 

Date Influent Effluent 

  mg/l mg/l 

06/09/2010 <5 <5 

07/09/2010 24.8 11.1 

09/16/2010 6.8 <5 

09/28/2010 <5 <5 

 

4.5.7 Lead Concentrations 

Water samples were only analyzed for lead on 07/09/10 (storm event 2), 09/16/10 (storm 

event 3), and 09/28/10 (storm event 4) and one set (influent and effluent) of samples were taken 

for each storm event except for on 09/16/10 when two sets were collected. Using the EPA 

6000/7000 Series Methods to analyze for lead there was a MDL of 0.015 mg/l and the majority 

of the samples taken had a non-detection of lead in the runoff as shown in Table 4.18.Except on 

09/28/10 the Stormceptor was able to remove 40% of lead from the runoff. 

Table 4.18: Lead Concentrations 

Date Influent Effluent 

  mg/l mg/l 

07/09/2010 < 0.015 < 0.015 

09/16/2010 < 0.015 < 0.015 

09/28/2010 0.048 0.029 
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4.5.8 Zinc Concentrations 

Sampling for zinc in the runoff started on the second storm event that occurred on 

07/09/10. Only one set of samples (influent and effluent) were taken for each storm event except 

on 09/16/10 when two samples were collected. Sampling that occurred during the second storm 

event had the lowest concentration of zinc as compared to other storm events (Figure 4.10). The 

influent concentration of 0.03 +/-0 mg/l was lower than the effluent concentration of 0.04 +/- 0 

mg/l and had a -43% reduction rate. The third storm event had the highest percent reduction of 

57%. The last storm event had a 12% reduction rate with 0.16 +/- 0 mg/l in the influent and 0.14 

+/- 0 mg/l in the effluent.  

 
 

Figure 4.10: Percent Reduction for Mean Zinc Concentrations 

 

4.6 Stormceptor Removal Efficiency 

 To determine if the stormceptor is an effective BMP at removing water pollutants a 

paired t-Test was used at a significance level of 0.05 for each average pollutant concentration 

combining all the storm events (t-Test were omitted for zinc, lead, oil and grease due to 

insufficient data). The efficiency was based on the pollution concentration before the runoff 
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entered the Stormceptor (influent) and after the runoff exited the Stormceptor (effluent). The 

following two hypotheses were used to examine this theory: 

 HO: there is no difference between the average influent and effluent concentrations.  

H1: there is a difference between the average influent and effluent concentrations using the 

Stormceptor. 

4.6.1 E.coli 

A paired t-Test was performed to determine if the Stormceptor was effective at removing 

E.coli from the runoff .The mean reduction (N= 4) was not significantly different from 0, t Stat = 

0.972, two tail p = 0.402 (Table 4-19), which provided evidence that the stormceptor is not 

effective at removing E.coli. Referring to Table 4.19 the t Stat (0.972) is less than t Critical two –

tail (3.18) which also indicates there is a 95% certainty that after the runoff went through the 

stormceptor there was no significant reduction in pollution concentrations combining all the 

storm events together. 

Table 4.19: E.coli Paired Two Sample t - Test 

  E.coli Effluent E.coli Influent 

Mean 3124.5 2114.5 

Variance 19,652,547 5,586,590 

Observations 4 4 

Pearson Correlation 0.998306707 
 Hypothesized Mean Difference 0 
 df 3 
 t Stat 0.972052004 
 P(T<=t) one-tail 0.201360424 
 t Critical one-tail 2.353363435 
 P(T<=t) two-tail 0.402720847 
 t Critical two-tail 3.182446305 
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4.6.2 Detergents 

Detergents removal from the system was tested using a paired t- test was used to 

determine the two hypotheses. Using only the first and second storm event (second peak flow) to 

analyze detergents (N=2). Table 4.20 shows t Stat = 13 p = 0.049 and the p value calculated for 

the two tailed test (0.049) is smaller than the alpha (0.05) therefore HO is rejected. Furthermore, 

Table 4.20 shows the t Stat (13) is larger than the t Critical two- tail value of 12.7, therefore HO 

is rejected. The Stormceptor is reducing detergents, on average. 

Table 4.20: Detergents Paired Two Sampled t-Test 

  Detergent Influent Detergent Effluent 

Mean 1.25 0.4375 

Variance 0 0.0078125 

Observations 2 2 

Pearson Correlation #DIV/0!   

Hypothesized Mean Difference 0   

df 1   

t Stat 13   

P(T<=t) one-tail 0.024437252   

t Critical one-tail 6.313751514   

P(T<=t) two-tail 0.048874504   

t Critical two-tail 12.70620473   

 

4.6.3 TSS 

Only three (N= 3) of the storm events (storm event 1 was omitted) were used to 

determine if the Stormceptor was significantly removing pollutants. The results for TSS using 

the paired t-Test showed that there was a 95% certainty that the Stormceptor is not effective at 

removing TSS from the system because there is no evidence to reject HO (fail to reject HO) as 

shown in Table 4.21 where: t Stat is 1.03, t Critical is 4.3, and  P value > 0.05. 
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Table 4.21: TSS Paired Two Sample t-Test 

  TSS Effluent TSS Influent 

Mean 90.1 44.53333333 

Variance 8283.73 237.1633333 

Observations 3 3 

Pearson Correlation 0.941999527   

Hypothesized Mean Difference 0   

df 2   

t Stat 1.029228291   

P(T<=t) one-tail 0.205781542   

t Critical one-tail 2.91998558   

P(T<=t) two-tail 0.411563085   

t Critical two-tail 4.30265273   

 

4.6.4 Nitrate 

 Table 4.22 shows the statistical analysis for all the nitrate water samples collected (N= 4) 

and the results are t Stat = 2.1and t Critical is 3.18 and P= 0.12. There is a 95% certainty that the 

Stormceptor does not effectively remove nitrate from the system (fail to reject HO because there 

is no strong evidence to reject it). However, the P value is 0.12, which is approaching a 

significant difference. 

Table 4.22: Nitrate Paired Two Sample t - Test 

  Nitrate Influent Nitrate Effluent 

Mean 8.583125 1.707395833 

Variance 35.53333456 1.314118738 

Observations 4 4 

Pearson Correlation -0.403564432   

Hypothesized Mean Difference 0   

df 3   

t Stat 2.112788773   

P(T<=t) one-tail 0.062517689   

t Critical one-tail 2.353363435   

P(T<=t) two-tail 0.125035379   

t Critical two-tail 3.182446305   
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4.6.5 Phosphorous 

Phosphorous was analyzed for all four storm events (N=4). The results from Table 4.23 

shows there is no difference between the average phosphorous concentrations in the influent and 

effluent samples and we therefore fail to reject H0 t Stat = 0.85 and t Critical = 3.18 and P = 

0.45. 

Table 4.23: Phosphorous Paired Two Sample t- Test 

  P Effluent P Influent 

Mean 0.6675 0.4425 

Variance 0.193225 0.017891667 

Observations 4 4 

Pearson Correlation -0.57528195   

Hypothesized Mean Difference 0   

df 3   

t Stat 0.852299223   

P(T<=t) one-tail 0.228341779   

t Critical one-tail 2.353363435   

P(T<=t) two-tail 0.456683558   

t Critical two-tail 3.182446305   
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4.7 PCSWMM 

PCSWMM was used to predict the rainfall-runoff surface flow rather than quality for 

four different storm events, all of which had different rainfall depths and durations. The model 

was calibrated using the observed flow data that was collected with the Sigma 910 flow meter 

from 06/09/10 – 10/01/10.  The relationship between rainfall and observed flow for the entire 

period of record is shown in Figure 4.11, while the relationships between rainfall and observed 

flow for the four modeled events is shown in Figure 4.12 

 

 

 

Figure 4.11: Hydrograph from all storm events 
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Figure 4.12: Hydrograph (rainfall-runoff) for individual storm events 
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Figure 4.13: PCSWMM version of study area. The red lines show the subcatchment areas 

that drain into the appropriate catchbasins (blue dots) which are all located on the main 

trunk line. 
 

To help ensure accuracy of the PCSWMM model predictions the model was calibrated to 

each of the storm events. Figure 4.13 shows a depiction of the PCSWMM model setup for the 

study area.  
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For each storm event the various attributes of the subcatchments were calibrated within a 

30% range to better represent the observed flow. Mainly the impervious areas, depression 

storage, and zero impervious area was adjusted (Figure 4.14). For each subcatchment either by 

visual or field inspection the attributes can be defined for PCSWMM. Adjustments were made 

for the time series due to the fact that the rain gauge data used hourly intervals and the flow 

meter collected data in five minute intervals and as such there was a two hour time lag when 

running the model. The data in the time series had to be set back by two hours to account for the 

time lag. Overall the storm events produced relatively small amounts of flow. To evaluate model 

performance, statistical analysis was used to assess the calibration by visual inspection of scatter 

plots and the coefficient of determination value for each storm event. A computer model that has 

higher than a 60% correlation is considered excellent. Three out of the four storm events showed 

strong correlations, which indicates overall that PCSWMM is a good indicator for predicting 

future flows (Figures 4.15 - 4.18). 
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Figure 4.14: Calibrating Model 
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Figure 4.15: Storm Event 1 correlation between predicted and observed flow, 65% positive 

correlation.  

 

Figure 4.16: Storm event 2 correlation between predicted and observed flow, 84% positive 

correlation. 
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Figure 4.17: Storm event 3 correlation between predicted and observed flow, 82% positive 

correlation. 

 

 

Figure 4.18: Storm event 4 correlation between predicted and observed flow, 32% positive 

weak correlation. 
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4.8 Quality Assurance and Quality Control 

Quality assurance and quality control was done during random sampling intervals and for 

different parameters by taking duplicate samples for phosphorus, nitrate, lead, zinc, oil and 

grease (no duplicates for E.coli and TSS). This was to assure that the original samples taken were 

defensible samples. As a control measure the relative percent difference (RPD) was calculated to 

determine if the outcomes were the same. Ideally calculating a RPD of 0% indicates that the 

original and duplicate sample were the same.  A RPD of 20% or greater will indicate that the two 

samples varied too much. A total of 13 duplicate samples were collected upstream (InOrg and 

InDup) and 6 duplicates were collected downstream (EffOrg and EffDup) of the stormceptor 

(Table 4.25A and 4.25B) 

Table 4.25A: Duplicate Influent Samples 

Date Pollutant Time interval InOrg InDup InAvg 

  
minute mg/l mg/l mg/l 

07/09/2010 Nitrate 90 1.9 0.9 1.4 

07/09/2010 Nitrate 90 1.9 0.25 1.075 

07/09/2010 O&G 90 24.8 6.4 15.6 

07/09/2010 Lead 90 0.0075 0.0075 0.0075 

07/09/2010 Zinc 90 0.03 0.03 0.03 

09/16/2010 Nitrate 15 0.25 1 0.625 

09/16/2010 Phosphorus 15 0.15 0.9 0.525 

09/16/2010 Phosphorus 60 0.15 0.2 0.175 

09/16/2010 Phosphorus 180 1 0.5 0.75 

09/28/2010 Phosphorus 60 0.3 0.15 0.225 

09/28/2010 Nitrate 30 0.2 0.25 0.225 

09/28/2010 Nitrate 60 2.9 0.25 1.575 

09/28/2010 Nitrate 120 2.4 0.25 1.325 

InOrg = original influent sample 

InDup = duplicate influent sample 

InAvg = average influent sample 
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Table 4.25B: Duplicate Effluent Samples 

Date Pollutant Time interval EffOrg EffDup EffAvg 

  
minute mg/l mg/l mg/l 

09/16/2010 Nitrate 60 0.25 1.3 0.775 

09/16/2010 Phosphorus 15 0.6 0.15 0.375 

09/16/2010 Phosphorus 60 0.7 0.2 0.45 

09/28/2010 Phosphorus 30 0.5 0.1 0.3 

09/28/2010 Nitrate 60 0.25 0.25 0.25 

09/28/2010 Nitrate 120 0.25 0.25 0.25 

      EffOrg = original effluent sample 

EffDup = duplicate effluent sample 

EffAvg = average effluent sample 

 

 Half the analyte MDL was used if the concentrations were 0 mg/l or below detect. Table 

4.26A and 4.26B shows the RPD for each duplicate sample. There were only two samples that 

had a RPD of 0% which was lead and zinc. The phosphorus sample taken on 09/16/10 and the 

nitrate sample taken on 09/28/10 both had a RDP value less than 50%. The samples taken for 

nitrate on 09/28/10 had the highest variation of 168% and 162% consecutively. The rest of the 

samples had values greater than 50%.  The two effluent samples for nitrate had RPDs that were 

0% and the rest of the samples had RPDs greater than 50%.  On 09/16/10 the nitrate sample had 

a RPD of 136%. During the 15 minute sampling interval on that day phosphorus had 120% RPD 

and at the 60 minute interval the RPD was 111%. A duplicate sample for phosphorus was taken 

on 09/28/10 and had a RPD of 133%. Half the MDL of 0.3 mg/l of phosphorus was used to 

calculate the RPD for some of the samples. This includes samples taken during the third storm 

event at the 15 minute interval in the influent and effluent and at the 60 minute interval in the 

influent. Half of the MDL was also used during the fourth storm event at the 60 minute sampling 

interval in the influent. 
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Table 4.26A: Relative Percent Difference of Influent Samples 

Date Analyte Interval InRPD 

 
 minute % 

07/09/2010 Nitrate 90 71.4 

07/09/2010 Nitrate 90 153.5 

07/09/2010 O&G 90 117.9 

07/09/2010 Lead 90 0.0 

07/09/2010 Zinc 90 0.0 

09/16/2010 Nitrate 15 120.0 

09/16/2010 Phosphorus 15 142.9 

09/16/2010 Phosphorus 60 28.6 

09/16/2010 Phosphorus 180 66.7 

09/28/2010 Phosphorus 60 66.7 

09/28/2010 Nitrate 30 22.2 

09/28/2010 Nitrate 60 168.3 

09/28/2010 Nitrate 120 162.3 

InRPD = influent relative percent difference 

 

Table 4.26B:  Relative Percent Difference of Effluent Samples 

Date Analyte Interval EffRPD 

 
 minute % 

09/16/2010 Nitrate 60 135.5 

09/16/2010 Phosphorus 15 120 

09/16/2010 Phosphorus 60 111.1 

09/28/2010 Phosphorus 30 133.3 

09/28/2010 Nitrate 60 0 

09/28/2010 Nitrate 120 0 

EffRPD = effluent relative percent difference 
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5. DISCUSSION 

5.1 Generalization for Each Storm Event 

The Stormceptor operates based on the drainage area and rate of flow rather than volume 

(Clayton 1999). Flow rate was taken into consideration for each sampling interval to determine 

how the In- Line Stormceptor STC - 2400 ® performed at removing pollutants from the runoff 

during different storm events.  The flow rate varied for each time interval and for each storm 

event. The Stormceptor is located on the main trunk line of the sewer system in a small drainage 

area and based on Rinker manufacturer standards the Stormceptor should be connected latterly 

from the trunk line. This is to prevent by-pass overflow from larger rainfalls. The Stormceptor 

has a patent (Number 4985148) to prevent scouring, but the results indicate that scouring could 

be one of the reasons why the effluent concentrations are higher than the influent concentrations. 

5.1.1 Storm Event 1 Trends 

For the first storm event on 06/09/10 there was a 48 hour antecedent period. The event 

had an average flow of 0.030 cfs during the sampling times and an accumulation rainfall of 0.15 

inches for that entire day with a runoff volume of 1,448 ft
3
. The rain event started Wednesday at 

6:00 am and there was not enough rainfall to produce a great enough flow to collect samples to 

do analysis. Samples were collected in the first 15 minutes during the second wave of rainfall 

which started around 11:40 am with a temperature of 54 degrees Celsius a wind speed of 9 mph 

South East and the rainfall reached 0.02 inches.  The rain event did not last long enough to do all 

six time intervals (15, 30, 60, 120, 180, 300 minute) for each type of sample. For this particular 

rain event only E.Coli, detergents, nitrate, total phosphorus, oil and grease were collected at 15 

and 30 minute intervals along with the pH which was neutral at 7.44.  
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With a normal flow rate the majority of the pollutants were able to be effectively 

removed by the Stormceptor except for phosphorus. This storm event had the highest mean 

concentration of pollutants removed as compared to the other three sampled events. Going into 

further detail for this event the flow rate fluctuated between the two sampling intervals (15 and 

30 minute). When the flow rate was 0.048 cfs during the first flush the amount of pollutants were 

higher and when the flow rate was 0.013 cfs the pollutant concentrations were lower.  

 There was a time delay at the upstream and downstream site because the team could not 

deploy fast enough for each time interval. Water samples were collected to analyze for TSS, but 

there were technical issues with the Tyson oven not being set to the appropriate temperature and 

the TSS apparatus was malfunctioning so analysis was not completed. Nitrate concentrations 

decreased over time in the effluent. Phosphorus had similar concentrations in the influent (0.3 

mg/l) as is normally found in runoff where the average is 0.26 mg/l (Center for Watershed 

Protection 2007) or 0.33 mg/l (EPA 1983) 

5.1.2 Storm Event 2 Trends 

For the second storm event on 07/09/10 there was a 72 hour antecedent period, but it was 

an infrequent high flow event with an average flow rate of 0.73 cfs during the sampling period 

and 0.48 inches of rainfall for the entire day with a runoff volume of 1,165 ft
3
. Since this was a 

high flow event the runoff managed to by-pass the weir and go straight into the outlet with no 

treatment or scouring could have prevailed. Therefore, the effluent concentrations were higher 

than the influent samples for majority of the pollutants.  
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The first peak flow event at 10:25 am (0.175 cfs) had a higher concentration for E.coli 

and detergents than the second peak flow event which had a higher flow rate of 0.852 cfs while 

zinc and oil and grease were lower than the second peak flow. The E.coli concentration for the 

first peak flow event was 4,300 colonies/ 100 ml in the effluent, which was higher than all the 

samples taken during the second peak flow event. The results for the detergents collected during 

the first peak  was 7.5 mg/l in the influent and was higher than the first storm event samples and 

the other sample taken during the second storm event. Since this was a 72 hour antecedent period 

the first flush had the highest amount of pollutants at a flow rate of 0.852 cfs because the 

pollutants were able to build up. The 30 minute interval had the highest flow rate of 1.006 cfs 

and had the second highest concentration of pollutants. The first flush washed or diluted the 

pollutants which reduced the amount of pollutants during the 30 minute sampling interval. The 

last interval had the lowest flow rate of 0.179 cfs and had the lowest concentration of pollutants. 

On average there was no pollutant removal for E.coli, TSS, zinc and phosphorus.  

False start rain events are problematic for a sampling program as it was for this case. For the 

most part, storm events are unpredictable and when sampling began it quickly came to a halt 

where only one sample could be collected, but it was ideal to collect samples that represented the 

storm event that is why there is a first and second peak sampling round. 

E.coli in the effluent was higher than in the influent, as was the case with the TSS. There 

is a possibility that the high flow could have scoured the E.coli and TSS. Detergents were 

analyzed for this storm event but not the previous due to shortage of supplies. The first peak 

showed a high concentration of detergents in the influent, but no downstream sample was 

collected because the team would not have been able to deploy fast enough. Detergents were 

visibly noticeable on the surface during the storm event. Analyzing for nitrate was slightly 
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problematic due to the inaccuracy of the Hannah Multiparameter meter that was used to test the 

water samples therefore the results are not conclusive. The results showed lower nitrate coming 

into the system and higher nitrate leaving the system. The assumption is as the rainfall dissipates 

so should the amount of pollutant concentration in the runoff. In this case at the 60 minute 

interval there were higher levels of nitrates found in the runoff than during the start of the 

rainfall, with 2.4 mg/l in the influent and 1.3 mg/l in the effluent. Triplicate samples were taken 

at the last interval for the influent and resulted in 1.9, 0.9, and 0.0 mg/l and then averaged to get 

0.93 mg/l. A triplicate sample was also done for the effluent sample and resulted in errors each 

time. 

5.1.3 Storm Event 3 Trends 

There was a 72 hour antecedent period for the third storm event on 09/16/10 and it had a 

very low flow rate with an average of 0.08 cfs during the sampling period and 0.39 inches of 

rainfall for the entire day with a runoff volume of 3,814 ft
3
. The sampling started as soon as it 

started raining and sample times were as follows: 15, 30, 45, 60, 120, and 180 minutes, which is 

slightly different from the previous two rain events of samples. The alteration of time intervals is 

due to the duration of the rain event itself.  The majority of the mean concentrations were lower 

in the effluent except for E.coli. It was observed that the E.coli levels during most of the 

sampling intervals in the effluent were higher than the influent concentrations. There was an 

outlier in the effluent sample during the 30 minute interval that was approximately 20 times 

higher than the influent and had the highest levels in the effluent, possibly due to scouring.  

Considering this was a 72 hour antecedent period, the first flush concentrations were 

relatively low compared to the other sampling intervals. There was only one exception; TSS had 

a higher concentration during the first flush. This storm event had the highest flow rate at 0.191 
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cfs during the 120 minute sampling interval which was right after the peak flow.  There was no 

large increase in concentration of any pollutants during this time. The flow rate of 0.191 cfs may 

have been the highest sampled for this event, but the flow rate is still relatively low. Zinc showed 

detection amounts in the runoff with a higher concentration during the first 15 minutes of 

sampling upstream that had 0.166 mg/l in the influent as compared to 0.031 mg/l in the effluent. 

Once the runoff went through the Stormceptor the amount of zinc went from 0.115 to 0.088 

mg/l. During the 60 minute interval of sampling the amount of lead found in the runoff 

drastically decrease from the initial start of sampling in the influent to 0.115 mg/l. The results for 

phosphorus in the runoff were variable when samples were taken for each time interval.  

Phosphorus in the influent sample fluctuated from concentrations at the beginning of the rain 

event (0.9 mg/l) to increasing even higher (1.9 mg/l) then decreasing again (0.2, 0.0 mg/l 

respectively) to increasing again to 0.75 mg/l over a period of time. Comparing the effluent to 

the influent water samples by time intervals 50% of the time the runoff coming through the outlet 

of the Stormceptor did decrease in concentration and the other 50% of the time there was an 

increase in concentration in the effluent. 

5.1.4 Storm Event 4 Trends 

The fourth storm event on 09/28/10 was a frequent low flow event that had a 24 hour 

antecedent period and an average flow rate of 0.34 cfs during the sampling period and there was 

an accumulation of 0.31 inches of rainfall for the entire day with a runoff volume of 3,037 ft
3
. 

The majority of the pollutants were removed by the Stormceptor except for TSS. TSS had higher 

concentrations for all the effluent samples than the influent samples except during the first flush. 

The highest flow rate was at 1.32cfs during the 30 minute interval and this also was peak flow 

for the event. The pollutant concentrations seemed to be higher when the flow rate was high. 



99 
 

Concentration generally was higher in the effluent than in the influent samples. E.coli and TSS 

results for the 30 minute interval showed that the effluent was higher than the influent 

concentrations. The effluent sample for nitrate had a higher concentration than the influent 

including the duplicate sample. Phosphorus had the highest concentration in the effluent and the 

influent had the second highest concentration during the 30 minute interval.  

5.1.5 Overall Trends 

There seemed to be little to no detection for lead and zinc in the runoff, but higher zinc 

concentrations were collected than lead. As noted by Warren (1981) lead and zinc are insoluble 

and zinc is more abundant than lead on roads. The zinc detected in this study could be associated 

with the galvanized roofs, which have numerous down spouts that drain directly into catchbasins 

that eventually flow into the inlet of manhole # 230 upstream of the Stormceptor. It is possible 

that concentrations were low for heavy metals because BSC employs a street sweeper to remove 

street sediment on a monthly basis.    

The Stormceptor is known to remove oil, grease, and TSS and it also has the capabilities 

of removing hydrocarbons and particle-bound pollutants. The Stormceptor indeed removed a 

large percentage of E.coli, detergents, and nitrate, but often it was not statistically significant. 

Nitrate soil concentration was consistently high for every storm event because nitrate is known to 

leach out. The concentration of phosphorus seemed to be relatively low for each storm event. 

There was a trend with phosphorus throughout each sampling event. Phosphorus consistently had 

higher concentrations in the effluent than in the influent samples for almost each time interval 

except during storm event 4. E.coli, nitrate, and detergents are not common monitoring 

pollutants so there are no standard removal rates for these pollutants. These pollutants were 

chosen because of the characteristics of the land use. Taking half of the MDL for lead, oil and 
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grease (when there was a non- detection in the sample) to calculate the mean concentration was 

not done, because it would of lead to misleading results due to small number of samples. Non – 

detection means there was not enough concentration to produce a reading, therefore that could 

mean there is 0 mg/l or some concentration remaining.  

Each pollutant had a MDL for analysis (except for TSS, E.coli, and detergents). If the 

pollutant did not meet the MDL then it was consider non-detected in the runoff. Some pollutants 

did not meet the MDL so a calculation was done to get a value to determine other parameters 

(i.e. percent removal reduction). The MDL using the Hanna Multiparameter meter for nitrate and 

phosphorus analysis for was 0.5 mg/l and 0.3 mg/l respectively. Using the EPA 6000/7000 for 

metals the MDL for lead and zinc was 0.015 mg/l and 0.013 mg/l respectively. The MDL for oil 

and grease using the EPA 1664A methods was 5.0 mg/l (Table 5.1). There is no MDL for E.coli 

using the Coliscan Easygel method or for TSS using a flask apparatus. 

Table 5.1: Method Detection Limit for Pollutants 

Nitrate Phosphorous Lead Zinc Oil and Grease 

mg/l mg/l mg/l mg/l mg/l 

0.5 0.3 0.015 0.013 5.0 

 

The pollutant concentrations were compared to the DEC National Median Concentrations 

and the EPA Nationwide Urban Runoff Program typical concentrations of pollutants found in 

urban runoff. This was to ensure BSC was not contributing to the excess amount of the typical 

pollutant concentrations found in urban runoff (i.e. by not over fertilizing the campus, on - going 

construction work, urbanized campus), especially considering that this is a small drainage area. 

Table 5.2 provides the typical pollutant concentrations found in stormwater runoff by three 

different entities. The Department of Environmental Conservation (Center for Watershed 
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Protection 2007) used the average concentrations to obtain the national median concentration. 

The EPA’s National Urban Runoff Program used the event mean concentrations (EMC) to 

determine the typical pollutant concentrations. The influent concentrations were averaged to 

determine how well it compared to the other two entities concentrations. 

Table 5.2: Typical Pollutant Concentrations found in Stormwater Runoff 

Entity TSS TP TN Lead Zinc F. Coli 

 mg/l mg/l mg/l mg/l mg/l 1000c/ml 

National 
Median 

Concentration 
(DEC) 

54.5 0.26 2.00 0.0507 0.129 1.5 

NURP (EPA) 
EMC 

100 0.33 N/A 0.144 0.160 N/A 

Stormceptor 
(Influent) 

Avg=44.5 Avg=0.44 Avg=1.9 *Avg=0.048 Avg=0.15 **Avg=2114.5 

*Not enough data to compute an average for lead  

** E.coli was tested and units are colonies/100 ml 

 

 In the study area the land uses are rooftops, streets, lawns, and a parking lot and source 

specific typical concentrations are shown in Table 5.3. Due to insufficient data for E.coli; fecal 

coliform was used instead because E.coli typically can be found in fecal coliform, but generally 

are lower in number. The mean concentrations for TSS in the influent was less than the typical 

concentrations found in stormwater (54.5 mg/l), but exceeded the amount found in parking lots 

which can help explain why there was no reduction. There was an outlier for the TSS during the 

first flush in the effluent with 719.6 mg/l and the rest of the concentrations in the effluent were 

under 200 mg/l. The mean concentration of 0.44mg/l exceeded the typical amount of 

phosphorous in runoff (0.26 mg/l) and what is normally found in parking lots (0.15 mg/l). The 

mean concentrations of nitrate detected in parking lots is1.9 mg/l and typical nitrate 

concentration is 2.0. The influent average concentration was in the range of expectation. Mean 
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zinc concentrations fell well below the typical concentrations detected in stormwater as well as 

what is detected in parking lots and rooftops. 

Table 5.3: Site Specific Typical Pollutant Concentrations in Stormwater Runoff  

(Center for Watershed Protection 2007) 

Site TSS TP TN Lead Zinc F.Coli 

 mg/l mg/l mg/l mg/l mg/l 1000c/ml 

Comm Rooftops N/A N/A N/A 0.017 0.256 N/A 

Parking Lots 27 0.15 1.9 0.139 0.028 1.8 

Street 468 N/A N/A 0.17 0.45 N/A 

 

5.2 Pollutant Removal 

The percent reduction and t –test for each pollutant was calculated to address the 

objective of how effective the stormceptor is at removing pollutants. The percent reduction was 

compared with five different previous studies and or testing laboratories that had already 

determined the percent removal rate for each pollutant using the Stormceptor (Table 5.4).  

Table 5.4: Stormceptor Verified Percent Removal Rate 

Testing Company TSS O & G Lead Zinc 

 
% % % % 

Rinker Manufacturer 80 95   

EPA 50 - 80    

CETV 76 - 94    

NJCAT 75    

Private Study Canada 52.7 43.2 51.2 39.1 

Stormceptor (Effluent) 0
2
,25.5

3
,0

4
 0

1
,55

2
,0

3
,0

4
 N/A 0

2
,57.1

3
,12.3

4
 

1 
= Storm event 1,

2 
= Storm event 2,

3 
=Storm event 3, 

4 
=Storm event 4 
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5.2.1 TSS Pollutant Removal 

TSS showed no reduction for the second and fourth storm event, but the third storm event 

showed a 25.5% reduction which did not meet any of the percent standard reduction and overall 

there is no significant reduction in TSS.  

5.2.2 Phosphorus Pollutant Removal 

The first two storm events showed no reduction for phosphorus, but the last two storm 

events had an 11.3% and 73.3% reduction. However, there was no significant reduction in EMC. 

There is no standard reduction for phosphorous using a Stormceptor. For the first storm event 

there were only two samples taken and there was a large standard error in the effluent sample. 

The second storm event showed reliable results and for the majority of the time the 

concentrations were higher in the effluent than in the influent samples. For the third storm event 

there was an 11.3% reduction but that is because there was an outlier in the influent sample that 

skewed the results; the majority of the time the effluent was higher than the influent sample. The 

fourth storm event showed favorable results. 

5.2.3 Nitrate Pollutant Removal 

For all four storm events the Stormceptor effectively removed nitrate from the runoff, but 

statistically showed no significant reduction in the EMC (at alpha = 0.05, although it was 

significant at P = 0.12 even though the percent removal was extremely high (94, 43, 55, 94%)). 

There is no standard percent reduction for nitrate using the Stormceptor.  

5.2.4 Lead Pollutant Removal 

The percent reduction rate was only calculated for the second, third, and fourth storm 

event for lead. The samples were below the MDL for the second and third event, but for the 

fourth storm event lead was detected and there was a 40% reduction rate. A case study conducted 
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in Canada showed there was a 51.2% removal of lead using the Stormceptor. There was no t-test 

calculated because the majority of the samples were non-detected. 

5.2.5 Zinc Pollutant Removal 

Zinc was reduced for the third and fourth storm event. There were no water samples 

collected for zinc during the first event and the second event showed no reduction. The third 

storm event had the highest removal rate of 57% and this exceeded the standard removal rate of 

39.1% established in Edmonton, Alberta Canada. There were two samples taken during the third 

event and one was during the first flush whereas only one sample was taken for the other storm 

events.  The fourth event had a 12.3% reduction rate and this was during the highest flow rate. 

The reduction rate was low overall because only one sample was taken. 

5.2.6 E.coli Pollutant Removal 

The Stormceptor exhibited a reduction in E.coli during the first (95%) and fourth storm 

event (35%), but there was no significant reduction overall. This could be due to the fact that the 

second and third storm events had negative reductions. It is evident why the mean concentration 

in the effluent was higher than the influent samples by reviewing the results for storm event 2, at 

each 15 minute interval. There were two outliers at the 45 minute and especially at the 60 minute 

interval that negatively impacted the outcome. The 60 minute interval had 500 c/100ml of E.coli 

in the influent and 3500 c/100 ml in the effluent. For storm event 3 the effluent sample had 

double the amount of E.coli present as compared to the influent sample during the first 15 

minutes. 
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5.2.7 Oil and Grease Pollutant Removal 

The EMC t –Test for oil and grease was not done, because there were a few samples that 

had non-detections. The first and fourth storm event showed no reduction in oil and grease. The 

second and third storm event had a 55% and 63% removal rate although Rinker manufacturers 

claim that the Stormceptor can remove 95% of oil and grease. A case study in Canada has 

concluded that the Stormceptor can remove 43.2% of oil and grease. Oil and grease in this case 

seems to be dependent on the antecedent period and first flush. The first storm event had no 

reduction because there was only a 48 hour antecedent period and had a low flow rate of 0.048 

cfs. As observed the fourth storm event had no reduction, but it had the highest flow rate of 1.3 

cfs as compared to the rest of the oil and grease samples during that sampling interval. This is 

because there was no antecedent period, it rained the day before. The second and third storm 

event had a 72 hour antecedent period, but the third storm event had a lower flow rate (0.009 cfs) 

and a higher percent reduction than the second storm event which had a flow rate of 0.21 cfs.  

5.2.8 Detergents Pollutant Removal 

Detergents were only analyzed during the first and second storm event because supplies 

were limited. There was a 70% and 60% reduction for these two storm events and there was a 

significant reduction in the EMC using the Stormceptor. The results suggested that the percent 

removal rate is in fact based on the magnitude of the storm i.e. the flow rate, but also the 

antecedent period.  
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5.3 First Flush 

It was important to collect a first flush sample for each storm event because this is the 

time when the highest amounts of concentrations may be observed (Saget et al. 1996) and this is 

important information for the design of future stormwater pollution controls. If the first flush is 

frequent then maybe more BMPs needs to be implemented (Saget et al. 1996). 

The first flush seems to be defined by the volume of rainfall.  From the results storm 

events 3 and 4 failed to exhibit a first flush. Storm Event 3 had a first flush flow rate of 0.009 cfs.  

Storm event 3 and 4 most likely did not have a first flush because the pollutants were not mobile 

due to a low flow rate; if there is not a strong flush the pollutants are immobile (Environment and 

Heritage 2012). E.coli during the first flush did not have the highest concentration compared to 

the rest of the sampling intervals.  TSS during the first flush in the influent was higher than the 

rest of the concentration, but the effluent sample had the lowest concentration compared to the 

rest of the results in the effluent.  Nitrate and phosphorus were unaffected by the first flush.  

There were 6.8 mg/l of oil and grease during the first flush and there was none detected in the 

effluent. Oil and grease was only sampled twice during the first flush for the first and third storm 

event and there was not enough data to determine if this concentration was significantly high to 

be considered a first flush. Most oil and grease samples taken at different time intervals and rain 

events resulted in non-detection except for one that had 24 mg/l that was not during a flush first. 

Zinc had high concentration during the first flush and a low concentration in the effluent 

compared to the other samples taken during that storm event. Storm Event 4 only had a 24 hour 

antecedent period so there was not a first flush for this event. Even though the Stormceptor is 

designed to handle the first flush (this is if the Stormceptor is on a lateral line, but this 

Stormceptor is located on the trunk line) Charbeneau et al. (2004) stated that the first flush can 
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be treated if diverted off the main trunk line and held until it can be slowly released back into the 

pipe system.  

5.4 QA/QC 

Duplicates were taken for the majority of storm events to determine if there were any 

inconsistencies with the original results. TSS and E.coli were the only two pollutants that did not 

have any duplicates.  The EPA has established an acceptable RPD range for duplicate samples to 

be 20% while Irvine et al. (1996) used a RPD of 35%. Any value above this will be flagged as 

having is too much variability between the original and duplicate sample. Ideally this paper aims 

to calculate an RPD of 0% for all thirteen duplicate samples to represent that this data as 

defensible. Technically calculating the RPD of a value that is 0 mg/l does not produce a logical 

answer. To replicate a more reliable RPD value one-half of the MDL was calculated for the 

analytes when the results were 0 mg/l or non-detected. Only four out of the 19 duplicate samples 

had an RPD of 0%. Lead and zinc duplicate samples taken in the influent during the second 

storm event had an RPD of 0%.The other two analytes that had an RPD of 0% was nitrate that 

was collected downstream of the site during the fourth storm event. Duplicate samples were 

taken during the 60 minute and 90 minute interval and the results were 0 mg/l for both the 

effluent and duplicates.  

Overall there were no other analytes that had an RPD value of less than 20% but two 

samples were under 35%; phosphorus (29%) was taken during the third storm event and nitrate 

(22%) taken during the fourth event. The rest of the RPD values were above 100%. The main 

analytes that contained duplicates were the nitrate and phosphorus samples. Both these samples 

were tested using a Hannah Multiparameter meter (which was not done by a third party) and had 

large variabilities between the original and duplicate samples. This particular meter had precision 
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errors because it was an old instrument. The oil and grease duplicate taken upstream of the site 

during the second storm event was analyzed at WST and the RPD was 118%.  The duplicates 

either analyzed by a non-third party or by WST show that there is still quite some variability 

with the samples. 

5.5 PCSWMM 

Before the model was calibrated the original model in PCSWMM was only slightly off 

from the observed flow for each storm event. The most distinct difference in the model vs. 

the observed flow was that the flow was offset by two hours, which was easily fixable by 

calibrating the model two hours early. The downside to PCSWMM was hourly rainfall data 

was used due to the fact that the rain gauge is set up to collect rainfall in hourly intervals. 

There needs to be smaller rainfall intervals and if need be the smaller increments can be 

added up to complete a one hour interval of rainfall. The other major flaw of the model was 

the flow peak volume did not match the size of the observed peak flows, which was amended 

by either decreasing or increasing certain attributes. For example if the model peak flows was 

higher than the observed peak flows, decreasing the impervious area attribute to a certain 

percentage (by using a method of trial and error) would decrease the model peak flows. Even 

the measured field data that was collected and used into the PCSWMM model had to be 

modified to fit the observed data. Field data can be subjected to human error and trying to 

justify the following attributes: Mannings N, depression storage, zero impervious. Some 

attribute values are based on referencing a table which can be inaccurate. Since each storm 

event had different rainfall amounts, each storm event had to be calibrated by manipulating 

different attributes. From looking at the previous Figure 4.14 the model flow is supposed to 

overlap on the observed flow data to indicate that the predicted flow matches exactly to the 
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observed flow. From visual inspection the calibrated model matches fairly close to the 

observed flow data. To verify how closely they match the correlation was calculated referring 

back to Figures 4.15- 4.18 For the most part all four graphs showed positive trends. As the 

observed flow increased so did the predicted flow throughout the storm event. 
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6. CONCLUSION AND RECOMMENDATIONS 

 

The BSC Stormceptor is designed to work in a parking lot area to capture and remove 

pollutants that are typically found in stormwater runoff, which are: TSS, oil and grease 

(hydrocarbons, heavy metals, and nutrients. BSC has a NPDES permit which requires water 

pollution discharge to be kept to a minimum and the Stormceptor was installed (retrofitted) for 

preventive measures to improve the water quality discharge from a 2.69 acre area. The results 

obtained from the water quality samples were pertinent to determine if the Stormceptor was 

effectively removing the pollutants from the runoff. Statistically the Stormceptor did not 

significantly reduce the EMC for the majority of the water pollutants analyzed in the 2.69 acre 

area, but with all BMP’s there are variabilities. 

 There were some limitation to this study that included not taking triplicate samples for 

each analyte and not collecting enough samples for oil and grease, lead, and zinc because of 

budget constraints. The samples taken for oil and grease, lead, and zinc did not represent the 

entire storm event nor could a realistic comparison be made. The Hannah Multiparameter meter 

presented a lot of variability in the results. This was evident in the QA/QC section for the 

nutrients. Another limitation was sampling upstream of the Stormceptor in the inlet of manhole 

#230 because the location of the Stormceptor’s inlet was not accessible. Also, there were three 

incoming pipes leading into the inlet of manhole #230 producing a greater amount of volume and 

possibly dilution which could help explain the higher concentration in the effluent samples than 

in the influent samples. Catching the ideal storm event is difficult (amongst other conditions). 

Another point of consideration is that in 2009 Rockwell Road was being reconstructed, and to 

cut down on cost the Stormceptor was retrofitted in this area on the main trunk line with no pre-

treatment BMP prior to the Stormceptor. Manufacturers advise, against installing the 
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Stormceptor on the main trunk line of the MS4, but instead be placed on the lateral trunk line. 

Overall the results showed that PCSWMM is a good predictor for quantity of flow. This 

particular Stormceptor has a by-pass flow rate of 8.37 cfs and PCSWMM can be used to 

calculate the frequency of by-passes. PCSWMM can also be used for calculating the pollutant 

load using EMC. This was more of a preliminary study for BSC because the Stormceptor was 

recently installed in 2009 and future performance test needs to be conducted. 

For future studies, more than four rain events need to be sampled and perhaps collecting 

water samples that have the same rainfall amount for each storm event, so there could be a better 

comparison. There should be a pre-treatment BMP installed upstream from the Stormceptor and 

there should also be another Stormceptor installed downstream from the original Stormceptor, so 

the whole 37 acre area sewereshed would be treated before discharging into Scajaquada Creek. 

The treated sediment that is stored in the sedimentation chamber should be analyzed and sieved 

as a different way to calculate the removal rate. This way would determine how much of a 

pollutant the Stormceptor is actually removing without the by-pass being a factor. 

. 
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