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ABSTRACT OF THESIS 

Influence of Nitrogen and Phosphorus on Ecosystem CO2 Exchange in a Restored 

Temperate Grassland 

Nitrogen (N) and phosphorus (P) affect the structure and function of grasslands by 

altering plant competitive interactions, shifting patterns of above- and belowground 

biomass allocation, and by increasing net primary production.  However, the influence of 

N and P on net ecosystem productivity is poorly understood.  In the context of a field-

based factorial N- and P-addition experiment, I measured soil moisture, leaf area index 

and component fluxes of ecosystem CO2 exchange throughout the growing season in a 

restored temperate grassland near Buffalo, New York.  I predicted that N-addition would 

enhance ecosystem CO2 uptake (GEE) while P-addition would stimulate ecosystem 

respiration (Re).  As predicted, N-addition increased GEE and correspondingly amplified 

net ecosystem CO2 exchange (NEE) to increase ecosystem CO2 uptake. In contrast, P-

addition did not significantly increase Re.  However, N- and P-addition interacted to 

significantly reduce NEE in comparison with plots that received N alone.  Moreover, 

water limitation and phenological constraints during the middle and late growing season 

appear to limit autotrophic responses to nutrient addition.  These results suggest that 

influences of N- and P-addition on ecosystem processes are seasonally dynamic and that 

the availability of N and P in soils may interact to weaken the strength of the terrestrial 

carbon sink.   
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Introduction 

 Anthropogenic climate change, species introductions, changing patterns of land-

use and shifting patterns of nutrient cycling are altering ecosystem structure and function 

worldwide (Vitousek et al. 1997, Arnell 1999, Walther et al. 2002, Weltzin et al. 2003).  

Terrestrial ecosystems have both above- and belowground components, which, though 

linked through litter inputs and the rhizosphere, respond differently to environmental 

alterations (Wardle et al. 2004, Kardol and Wardle 2010).  For example, nitrogen 

deposition has increased greatly due to a combination of anthropogenic factors associated 

with the burning of fossil fuels and the use of industrial fertilizers in agriculture 

(Vitousek et al. 1997).  Nitrogen deposition may alter species richness, increase 

photosynthesis or alter aboveground net primary productivity (Vitousek et al. 1997, 

Stevens et al. 2004, Stevens et al. 2009).  In turn, these changes may modify the cycling 

of other soil nutrients, especially phosphorus (Stewart and Tiessen 1987).   

 Nitrogen (N) availability limits primary productivity in temperate grasslands 

(Chapin et al. 1987, Tilman 1987).   However, in contrast with the role of N in limiting 

primary productivity in temperate grasslands, phosphorous (P) mainly limits 

heterotrophic activity, such as the abundance of soil microbes (Sundareshwar et al. 

2003).  The effect of P on heterotrophs in temperate grasslands may in turn affect 

autotrophs by altering root to shoot ratios (Marschner et al. 1994).  Moreover, N and P 

may co-limit temperate grasslands because they affect ecosystems differently (Morecroft 

et al. 1994, Craine et al. 2003, Niinemets and Kull 2005).  In isolation, increased N or P 

may not have a large effect on plant activity, however, at least in some grasslands, N and 
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P in combination may increase aboveground net primary productivity (Craine et al. 

2003).   

 These two limiting nutrients, N and P, influence autotrophs in several ways.  N-

addition is known to increase leaf photosynthesis (Gulmon 1981) whereas P-addition can 

indirectly increase shoot length in plants (Marshner et al. 1994).  Plants may allocate 

resources to aboveground productivity rather than to root growth if P is present in 

significant quantities in the soil (Marschner et al. 1994).  N-addition increases the 

concentration of ribulose-1, 5-bisphosphate carboxylase oxygenase (Rubisco), the 

enzyme responsible for primary carboxylation in C3 photosynthesis, thereby increasing 

leaf level photosynthesis (Evans 1989).   In practice, this usually means that the 

concentration of Rubisco increases with increasing N-availability (Warren et al. 2002).  

Plants generally allocate additional N to photosynthetic apparatuses, such as the antenna 

complex (Evans 1989).  As the concentration of Rubisco increases, the maximum rate of 

photosynthesis also increases (Quick et al. 1991).   

Likewise, N and P may influence soil microbial communities in complex ways.  

For example, P-addition has been shown to increase microbial respiration in soils where 

P is in short supply (Amador and Jones 1993).  N- and P-addition may alter microbial 

community composition and biomass, thereby altering microbial respiration (Amador and 

Jones 1993, Bardgett et al. 1999, Piceno and Lovell 2000, Kennedy et al. 2004).  In long-

term studies, N and P in combination have been shown to decrease diversity in microbial 

community composition (Piceno and Lovell 2000).  Likewise, Kennedy et al. (2004) 

demonstrated that soil N content had a greater influence on microbial community 

composition than plant community composition or other plant-mediated characteristics of 
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the rhizosphere.  However, Bardgett et al. (1999) observed that changes in plant 

productivity along with N-addition altered microbial biomass and community 

composition in the short term.   

Several studies have demonstrated the influence of N and P availability on the 

structure and function of grassland ecosystems (Tilman 1987, Wilson et al. 1995, Gulis 

and Suberkropp 2003).  Through a structural change, such as increased canopy 

development, ecosystem functions that effect ecosystem CO2 exchange may also be 

altered.  N and P influence the components of ecosystem CO2 exchange, photosynthesis 

and respiration as well (Evans 1989, Piceno and Lovell 2000, Sundareshwar et al. 2003).  

Temperate grasslands are typically considered as a net carbon sink (Scurlock and Hall 

1998). However, N and P-addition might differentially influence the components of 

ecosystem CO2 exchange in turn altering the source-sink dynamics of the carbon cycle.  

Thornley and Cannell (1997) demonstrated that additional CO2 can increase the strength 

of the carbon sink in a grassland as long as the grasses are able to continually 

photosynthesize more. Although researchers have shown the ways in which N positively 

influences photosynthetic rates (Evans 1989) and that increased P availability may 

increase microbial respiration (Amador and Jones 1993), how these nutrients influence 

ecosystem carbon balance on their own and in combination with one another is 

understood less.   

Measurements of ecosystem CO2 exchange taken before 2003 were usually 

conducted using tower-based eddy covariance measurements requiring expensive 

instrumentation and infrastructure and large (> 1 ha), topographically uniform sites.  

Understandably, research emphasized broad-scale, long-term observational studies rather 
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than manipulative experiments (Xu and Baldocchi 2003).  Moreover, often the most 

reliable data from these studies are measurements of daytime net ecosystem CO2 

exchange, rather than rates of photosynthesis or respiration (Bladocchi 2003).  Eddy 

covariance data collected from towers are reliable when weather conditions are calm and 

the area being studied is homogenous, but are less accurate in real world situations that 

include high wind, changing weather, intricate landscapes or conditions that change over 

the course of time (Baldocchi 2003).   

To address some of the shortcomings of tower-based methods, Arnone and Obrist 

(2003) created a portable chamber in which to measure ecosystem CO2 exchange on 

small (< 9 m
2
) plots.  Through the advent of a portable means to measure the component 

fluxes of ecosystem CO2 exchange, researchers can now manipulate small experimental 

plots and measure ecosystem CO2 exchange with accuracy.  The original static chamber 

made by Arnone and Obrist (2003) has become a template for many other small scale 

manipulation experiments such as in the context of comparing burned and unburned 

sections of shrub land (Prater et al. 2006), CO2 enrichment experiments (Jasoni et al. 

2005) and rainfall manipulation experiments (Huxman et al. 2004b, Potts et al. 2006a, 

Potts et al. 2012).   

Many of the manipulation experiments done using the tent based CO2 exchange 

method have been done in arid or semi-arid regions (Arnone and Obrist 2003, Huxman et 

al. 2004a, Huxman et al. 2004b, Jasoni et al. 2005, Yepez et al. 2005, Potts et al. 2006a 

and 2006b, Prater et al. 2006, Carbone and Trumbore 2007, Harpole et al. 2007, Patrick 

et al. 2007, Nakano et al. 2008).  Few studies have been focused outside of arid regions 

(Risch and Frank 2006, Carbone et al. 2007). For example, Risch and Frank (2006) used 
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a portable chamber to measure grazing and topographic effects on seasonal patterns of 

CO2 exchange in a temperate grassland in Yellowstone National Park. 

 My objective was to determine how N- and P-addition influence seasonal patterns 

of shallow soil moisture, canopy development, ecosystem CO2 exchange and above 

ground net primary productivity (ANPP).  In the context of a N- and P-addition 

experiment in a restored temperate grassland, I predicted that N-addition would stimulate 

canopy development and, in turn, draw down shallow soil moisture.  Similarly, I 

predicted that N-addition would increase canopy photosynthesis and, in turn, increase net 

ecosystem CO2 exchange (NEE).  In contrast, by stimulating microbial respiration, I 

predicted that P-addition would increase mid-day ecosystem respiration Re and thus 

decrease NEE.  Finally, I predicted that the contrasting effects of N- and P-addition on 

net ecosystem CO2 exchange would offset one another in experimental plots that received 

simultaneous N- and P-addition. 
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Materials and Methods: 

 

Site Description 

 This research was conducted at Tifft Nature Preserve (TNP) in the city of Buffalo, 

New York (42.87°N 78.87°W; elev. 181 m).  Located on a former industrial site south of 

downtown Buffalo on the shore of Lake Erie, TNP is managed by the Buffalo Museum of 

Science as a nature preserve encompassing wetlands, riparian forest and grassland areas.  

The experimental site was located on the gently sloping east face of a former municipal 

landfill that was capped in 1973.   Soils at the experimental site were shallow (~ 45 cm 

deep) and were situated on top of an impermeable layer of bentonite clay.  Soil at the site 

originated as pond dredging during excavation of surrounding wetlands.  This organic-

rich, silty–clay soil was subsequently compacted during the capping of the landfill (David 

Spiering, personal communication). 

The site has a humid, continental- type climate influenced by the presence of the 

Great Lakes.  The nearest climate data are recorded approximately 16 km away at the 

Buffalo Niagara International Airport in Cheektowaga, NY (42.56
o
 N, 78.43

o
 W, elev. 

222 m) with a mean annual temperature of 9
 o
 C and a mean annual precipitation of 924 

mm.  Precipitation for the period April 2010–November 2010 was 617.98 mm (Figure 

1A).    

The site was seeded in 1973 with a mix of non-native grasses and forbs. Presently, 

the plant community is dominated by the cool-season grasses Festuca rubra (red fescue) 

and Bromus inermis (smooth brome).  Other, less abundant species include the cool-
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season grass, Agrostis gigantea (red top), and the non-native forbs, Coronilla varia 

(crown vetch) and Lotus corniculatus (bird’s foot trefoil).   

 

Experimental Design 

 Five experimental blocks, each containing four, 1 m x 1 m plots were delineated 

in May 2009.  Block locations were selected based on similar slope position, proximity to 

one another and similar, representative vegetation.  Within each experimental block, a 1 

m aisle separated experimental plots to facilitate access and to provide a buffer between 

experimental treatments.  An aisle approximately 3 m long separated each block.  Plots 

corners were demarcated using short lengths of ½-inch PVC pipe and were randomly 

assigned as a control (C), nitrogen-addition (N), phosphorus-addition (P) or nitrogen and 

phosphorus-addition (N+P) plots.  The plots were fertilized for two years beginning in 

2009; nutrients were applied on April 1, June 14, August 1 and September 14.  Nitrogen 

was applied by hand in the form of calcium nitrate (CaNO3) pellets at a rate of 10g 

NO3/m
2
/yr and phosphorus was applied by hand in the form of triple super phosphate 

(TSP) pellets at a rate of 8 g PO4/m
2
/yr.  The use of these fertilizers at these application 

rates is consistent with similar nutrient addition experiments (Baddeley et al. 1994, 

Phoenix et al. 2003, Harpole et al. 2007). 

 

Measurements of Soil Moisture, Canopy Development 

 Volumetric soil moisture (θ) was measured every seven to ten days using a 

portable meter fit with 12 cm probes (Hydrosense Campbell Scientific, Logan, UT) 
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between April 22 and October 8, 2010.  Probes were inserted vertically into the soil in 

three, representative locations in each plot and measurements of θ were averaged.  

Seasonal patterns of leaf area index (LAI) were estimated by measuring canopy 

interception of photosynthetically active radiation (PAR) using a line ceptometer 

(Accupar, Decagon Devices, Pullman, WA) every seven to ten days between April 22 

and October 8, 2010 during the midday under clear sky conditions.  For above-canopy 

measurements of PAR, the line ceptometer was oriented level and positioned 25 cm 

above the canopy, facing south.  For below-canopy measurements, three measurements of 

PAR were made at 25 cm intervals, positioned level above the soil litter layer, facing 

south and averaged.  Leaf area index was calculated from measurements of canopy light 

interception using the line ceptometer’s built-in algorithm.   

 

Measurements of Ecosystem CO2 Exchange 

A tent-based method of collecting CO2 exchange data was used to observe the 

effects of nutrient addition on the component fluxes of ecosystem CO2 exchange.  This 

method of collecting CO2 exchange data is ideal for working in the context of 

experimentally manipulated field plots (Arnone and Obrist 2003).  The tent-based method 

of CO2 exchange has been used in similar manipulation experiments (Huxman et al. 

2004b, Potts et al. 2006a, Harpole et al. 2007, Patrick et al. 2007). 

Measurements of midday ecosystem CO2 exchange were made using a portable, 

static chamber measuring 1.0 m by 1.0 m by 1.5 m, constructed of PVC piping, and 

covered by a tightly-sewn, translucent polyethylene cover (Durashield 6000, Thor Tarp, 

Oconomowoc, WI).  These measurements were made eight times over the course of the 
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2010 growing season (May 10, May 25, June 18, July 2, July 22, August 7, August 29 

and September 26) under clear sky conditions between the hours of 11:00-13:00.  To 

measure net ecosystem CO2 exchange (NEE), the chamber was positioned over a plot and 

secured to the ground by a heavy chain to minimize leaks.  Inside the chamber, two 23 

cm diameter, electric fans mounted on a portable tripod mixed the chamber atmosphere 

while a pump connected to flexible tubing cycled chamber atmosphere to and from an 

infrared gas analyzer (Li-840, Licor Environmental, Lincoln, NE) positioned outside the 

tent.  After an initial mixing period of 30 seconds, changes in CO2 concentration inside 

the tent were logged to a portable computer for 90 seconds.   

To measure ecosystem respiration (Re), the chamber was ventilated, reseated and 

the heavy chain was repositioned.  Then, an opaque cover was placed over the chamber, 

the chamber was allowed to mix for 30 seconds, and the increase in chamber CO2 

concentration was logged for 90 seconds.  Because temperature influences gas molecule 

density, air temperature inside the chamber was recorded with a fine-wire thermocouple 

attached to a portable reader (Fluke 51-54 Series II Thermometer, Everett, WA) at the 

beginning and end of each measurement of NEE and Re.  During 120 seconds that would 

elapse during a typical measurement of NEE, air temperature would increase ~2°C over 

ambient.  In addition, light conditions inside the chamber were recorded with a 

photosynthetically active radiation (PAR) sensor connected to a bubble-level and 

attached to a portable tripod (Decagon Devices, Pullman WA) during each measurement.  

I calculated NEE and Re using air temperature and change in CO2 concentration with 

time according to Jasoni et al. (2005).  I estimated gross ecosystem CO2 exchange (GEE) 

as:   
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 NEE = GEE – Re 

where NEE is net ecosystem CO2 exchange, GEE is gross ecosystem CO2 exchange and 

Re is ecosystem respiration.  Leaf area within plots varied greatly throughout the growing 

season and between experimental treatments.  To better understand seasonal- and 

treatment-mediated shifts in GEE per unit leaf area, I standardized GEE measurements 

with LAI measurements to calculate leaf area adjusted GEE (GEEA) as: 

            GEEA= GEE / LAI 

where LAI was taken within +/- 2 days of the ecosystem CO2 exchange measurements. 

 

Measurements of Aboveground Net Primary Productivity 

 I estimated aboveground net primary productivity (ANPP) and litter abundance by 

clipping a 10 cm x 100 cm strip in each experimental plot during the second week of 

October 2010.   Clipped biomass was sorted in the field as grasses, forbs and litter, 

returned to the laboratory, oven dried for 48 hours at 50
o
C and weighed. I report ANPP as 

the sum of area-adjusted live grass and forb biomass and expressed on a per square meter 

basis. 

 

Statistical Analysis 

 Data were examined to see if they met the normality assumption of parametric 

statistics.  In the case of ANPP, data were log transformed to meet this assumption.  A 

two-factor, repeated measures ANOVA (JMP, SAS Institute, Cary, NC) was used to test 

for the significance of N-addition, P-addition, time and their interactions using NEE, 

GEE, Re, θ and LAI as response variables.  I used a two-factor ANOVA to test the effect 
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of N-addition, P-addition and their interaction on ANPP.  To better understand the effects 

of N- and P-addition on the linkage between above- and below-ground processes, I 

plotted average GEE and average Re on all dates using linear regression and tested for 

separate slopes.  
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Results:   

Across nutrient addition treatments, volumetric soil moisture (θ) reflected 

seasonal patterns of precipitation (Figure 1A-B). Early in the growing season, frequent 

rainfall resulted in greater θ.  As the growing season progressed, smaller, less frequent 

storms were associated with declining θ across treatments (Table 1, Time).  Throughout 

the growing season, N-addition influenced a decline in θ (Table 1, N), however, this 

effect was minimized during the driest portions of the growing season (Table 1, N x 

Time).  In contrast, P-addition did not influence θ.  

Beginning in mid-April and continuing through early October, continuous 

grassland canopy development was reflected in increasing leaf area index (LAI) 

throughout the growing season (Figure 2; Table 1, Time). Similar to θ, N-addition 

increased LAI throughout the growing season (Table 1, N).  The positive effect of N-

addition on LAI was reflected in the significant positive effect of N-addition on ANPP 

(Figure 3).  In contrast, P did not significantly increase ANPP nor did the positive effect 

of N-addition depend on the addition of P (Figure 3). 

Net ecosystem CO2 exchange (NEE) varied throughout the growing season in a 

saddle-shaped pattern (Figure 4).  The greatest rates of midday net CO2 uptake (indicated 

by large, negative values of NEE) occurred during the early growing season.  As the 

growing season progressed, midday NEE became less negative (indicating a weakening 

of the ecosystem as a midday C-sink) and became more negative again during the late-

growing season. 

Consistent with my prediction, N-addition produced increasingly negative values 

of NEE (Table 2; N).  The effect of N-addition was greatest during the early-growing 
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season and declined as the growing season progressed (Figure 5; Table 2, Time x 

Nitrogen).  In contrast, P-addition did not influence NEE (Figure 4).  However, N and P 

in combination were associated with a weakening of the ecosystem as a midday CO2 sink 

(as indicated by values of NEE closer to zero) compared to those that received only N-

addition (Table 2, NxP).     

Seasonal patterns of ecosystem respiration (Re) mirrored the saddle-shaped 

dynamics of NEE (Table 2, Time).  During the early growing season, Re increased 

rapidly (larger positive values indicating increased respiratory losses of CO2 by plants 

and soil microbes) before declining during July. Later, Re increased for a second time 

during August and declined during the last measurement in late September. Contrary to 

my prediction, P-addition did not significantly increase ecosystem respiration (Re; Figure 

5).  Similar to NEE, the influence of N-addition on Re was seasonally dynamic such that 

the positive influence of N on Re was greatest during the earliest part of the growing 

season (Table 2, N x Time).   

Similar to ecosystem respiration, N-addition significantly increased gross 

ecosystem CO2 exchange (GEE) as predicted (Table 2, N).  The treatment effect of N on 

GEE was seasonally dynamic, being pronounced in the early portion of the growing 

season and later declining (Figure 6; Table 2, N x Time). Consistent with other 

components of ecosystem CO2 exchange I measured, P-addition did not influence GEE. 

Moderate temperatures and abundant soil moisture during the early growing season 

created an ideal environment for C3 photosynthesis (Figure 1B).  However, in the middle 

portion of the growing season, high temperatures and low soil moisture (Figure 1B) may 

explain the decline in photosynthesis (Figure 6). The most negative GEE values occurred 
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in the early growing season (May 10, May 25, June 18) and the greatest differences 

between treatments also occurred at these times (Figure 6).  Interestingly, although GEE 

was greatest during the early growing season, LAI was at its lowest (Figure 2).   

To better understand the influence of N- and P-addition on the relationship 

between GEE and Re, I used least squares linear regression to compare treatment 

averaged GEE and Re across sampling dates (Fig. 7).  Regardless of treatment, 

increasingly positive Re (indicating increasing CO2 efflux) was correlated with 

increasingly negative GEE (indicating increasing CO2 uptake by the ecosystem; Fig. 7).  

However, the 95% confidence interval of around the slope of the best-fit line does not 

form a one-to-one ratio, suggesting that throughout the growing season, changes in 

midday GEE are consistently matched by changes in Re of the same magnitude (mean =  

-1.16, 95% CI = -1.37―-0.96, n = 32).  Finally, treatment-specific regressions did not 

explain significant additional variance, suggesting that nutrient addition does not alter the 

fundamental relationship between these principal component fluxes of ecosystem CO2 

exchange. 

In striking contrast with seasonal patterns of GEE, GEEA declined exponentially 

throughout the growing season (Fig. 8; Table 1, GEEA).  Although N-addition plots had 

greater LAI than other plot types, GEEA was most negative in the control plots.  

Moreover, large negative values of GEEA in control plots suggest that on a per unit leaf 

area basis, control plots were more efficient at canopy photosynthesis than those that 

received supplemental nitrogen. 
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Discussion: 

Consistent with my first prediction, N-addition stimulated canopy development 

during the early portion of the growing season (Fig. 2) and was accompanied by a 

decrease in shallow soil moisture (Fig. 1B).  Differences in leaf area index (LAI) between 

N-addition and control plots increased rapidly in the early growing season.  However, 

later in the growing season, plants in the N-addition plots were not able to continually 

increase leaf area because they were likely constrained by phenology or water limitation 

(Begonia and Begonia 2007, Harpole et al. 2007).  Indeed, during the latter portions of 

the growing season, water limitation might limit the effects of N-addition on ecosystem 

CO2 exchange (Harpole et al. 2007). 

In addition to nitrogen availability, water limitation may limit temperate grassland 

ANPP (Burke et al. 1997; Knapp et al. 2001).  In the present study, a decline in soil 

moisture during the middle growing season was associated with less negative midday 

NEE (Fig. 1B, 4).  In fact, during the middle and late growing season, NEE declined to 

rates similar to those observed in a Chihuahuan desert grassland (Patrick et al. 2007).  A 

mid-season decline in midday NEE is attributable to a decline in GEE (values closer to 

zero) associated with water limitation and high midday temperatures leading to high rates 

of photorespiration in this plant community dominated by the C3 photosynthetic pathway 

(Sharkey 1988).  While several studies have experimentally established the linkage 

between soil moisture and ecosystem CO2 exchange in semi-arid (Potts et al. 2006a, 

Patrick et al. 2007) and Mediterranean-type grasslands (Harpole et al. 2007; Potts et al. 

2012), much remains to be learned regarding the role of seasonal water deficit in 
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constraining ecosystem CO2 exchange in ecosystems not typically associated with water 

limitation (Weltzin et al. 2003; Xia et al. 2009). 

Whereas middle growing season water limitation may have reduced NEE, N-

addition increased NEE (Fig. 5).  This increase in the strength of the ecosystem as a 

midday carbon sink was supported by increased LAI and more negative GEE in N-

addition plots in comparison with other treatments. Whereas Flanagan et al. (2002) 

observed close correlation between changes in GEE and changes in LAI in a Canadian 

shortgrass steppe, I observed the most negative GEE during the early growing season, 

long before LAI peaked (Fig. 6 and 2 respectively).  However, the LAI values observed 

by Flanagan et al. (2002) were relatively low (LAI < 1) whereas in the present study, LAI 

reached a maximum of approximately 7 (Fig. 2).  Increasing light limitation of 

photosynthesis with increasing LAI may help to explain the weak linkage between LAI 

and GEE that I observed.  Indeed, canopy light limitation has been implicated in altering 

the structure of meadow communities (Hautier et al. 2009) though its influence on 

grassland CO2 exchange remains poorly studied.  

To better understand the CO2 exchange implications of increasing LAI associated 

with N-addition, I calculated leaf area adjusted GEE (GEEA).  Over the course of the 

growing season, GEEA declined rapidly as GEE became less negative and LAI increased 

(Fig. 8). While the influence of supplemental nitrogen on leaf-level photosynthesis is well 

documented (Evans 1989), few studies have attempted to document the effects of 

supplemental N on GEE (Harpole et al. 2007; Niu et al. 2010).  In the context of a 

factorial N-addition and free air CO2 enrichment study, Lee et al. (2001) observed that 

supplemental N did not increase leaf photosynthesis.  Instead, plants responded to 
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increased N availability by increasing leaf area.  In a similar fashion, I observed that N-

addition was associated with a decline in GEEA suggesting that grasses in these plots 

allocated N to produce more leaves, rather than increasing the nitrogen content and hence 

photosynthetic capacity, of existing leaves. 

  Surprisingly, in addition to positively influencing GEE, N-addition positively 

influenced Re.  Enhanced Re in N-addition plots may be explained in part by the greater 

plant biomass that these plots supported (Potts et al. 2008; Xia et al. 2009).  In addition to 

this increase in Re associated with an increase in plant biomass, by increasing plant 

productivity, N-addition may have indirectly increased soil microbial respiration through 

the increased availability of labile carbon in the rhizosphere (de Graaff et al. 2010).  The 

close association between GEE and Re across experimental treatments is consistent with 

the idea that these important ecosystem functions are tightly coupled to one another 

through plant productivity (Fig. 7; Metcalfe et al. 2011).  

Labile carbon limitation by soil microbes may also help explain the fact that, 

contrary to my prediction, P-addition had little influence on Re and NEE.  Instead, the 

effect of P-addition on ecosystem CO2 exchange depended on nitrogen availability (Table 

2, N x P).  By stimulating plant productivity, N-addition may have indirectly increased 

labile carbon supply to the soil through enhanced root activity and increased root 

exudates (Högberg and Read 2006) in turn shifting microbial activity from carbon 

limitation to P-limitation.  However, while this explanation is supported by the response 

of NEE, the interactive effects of N- and P-addition on Re are less consistent suggesting 

the possibility that this interactive effect is mediated by other environmental conditions 

such as temperature or soil moisture.  Alternatively, a lack of Re response to P-addition 
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may be related to a decrease in plant allocation to fine roots and root exudates with 

increased P-availability (Marschner et al. 1996).  By reducing below ground allocation of 

carbon by plants, increasing microbial labile carbon limitation may have offset P-

mediated increases in soil microbial respiration. 

Differential responses of above- and belowground components of grassland 

ecosystems to N- and P-addition influence ecosystem CO2 exchange, and therefore 

ecosystem carbon balance.  Moreover, these responses are seasonally dynamic reflecting 

plant phenology and allocation plasticity as well as the limitation of temperature and soil 

moisture on photosynthesis and soil microbial activity.  Driven by increasing LAI, N-

addition significantly increased growing season GEE, Re and NEE.  In contrast, the effect 

of P-addition on NEE depended on the availability of N and influenced a weakening of 

the ecosystem as a carbon sink.  The significant interaction of these factors reinforces the 

critical role of plant-mediated labile carbon allocation to the rhizosphere (Metcalfe et al. 

2011) and the close coupling of nitrogen and phosphorous availability in controlling 

carbon balance in this restored temperate grassland (Kardol and Wardle 2010).   
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Figure 1(A):  Daily precipitation during the 2010 growing season. (B) Mean ± SE 

volumetric soil moisture (Θ) taken using a 12cm soil moisture probe in control (C), N-

addition (N), P-addition (P) and NP-addition (NP) plots during the 2010 growing season 

in a restored, temperate grassland near Buffalo, NY.   
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Figure 2:  Mean ± SE leaf area index (LAI) in control (C), N-addition (N), P-addition (P) 

and NP-addition (NP) plots during the 2010 growing season in a restored, temperate 

grassland near Buffalo, NY.   
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Figure 3:  Aboveground net primary productivity (ANPP; g/m
2
) in control (C), N-

addition (N), P-addition (P) and NP-addition (NP) plots in a restored, temperate grassland 

near Buffalo, NY.  Error bars indicate SE.   
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Figure 3 
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Figure 4:  Mean midday net ecosystem CO2 exchange (NEE; µmol CO2/m
2
/s) in control 

(C), N-addition (N), P-addition (P) and NP-addition (NP) during the 2010 growing 

season in a restored, temperate grassland near Buffalo, NY.  Error bars indicate SE.  

Increasingly negative egative values indicate increasing ecosystem CO2 assimilation. 
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Figure 5:  Mean midday ecosystem respiration (Re; µmol CO2/m
2
/s) in control (C), N-

addition (N), P-addition (P) and NP-addition (NP) during the 2010 growing season in a 

restored, temperate grassland near Buffalo, NY.  Error bars indicate SE.  
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Figure 6: Mean midday gross ecosystem CO2 exchange (GEE; µmol CO2/m
2
/s) in control 

(C), N-addition (N), P-addition (P) and NP-addition (NP) during the 2010 growing 

season in a restored, temperate grassland near Buffalo, NY.  Error bars indicate SE.  

Negative values indicate increasing ecosystem CO2 assimilation. 
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Figure 7:  Midday gross ecosystem CO2 exchange (GEE; µmol CO2/m
2
/s) versus midday 

ecosystem respiration (Re; µmol CO2/m
2
/s) for all sampling days in control (C), N-

addition (N), P-addition (P) and NP-addition (NP) during the 2010 growing season in a 

restored, temperate grassland near Buffalo, NY.  Symbols follow Fig. 1B.  Increasing 

negative values of GEE note increasing ecosystem CO2 assimilation. 
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Figure 8: Leaf area adjusted midday gross ecosystem CO2 exchange (GEEA; µmol 

CO2/m
2
/s) in control (C), N-addition (N), P-addition (P) and NP-addition (NP) during the 

2010 growing season in a restored, temperate grassland near Buffalo, NY.  Error bars 

indicate SE.  Increasing negative values note increasing uptake of CO2 by the ecosystem.  
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Table 1:  Degrees of freedom (df) and F-statistics from the repeated measures ANOVA 

on the effect of N-addition, P-addition and time on volumetric soil moisture (Θ),  leaf 

area index (LAI) and leaf area adjusted-GEE (GEEa) in a restored temperate grassland 

near Buffalo, New York. Θ, volumetric soil moisture; LAI, leaf area index; N, nitrogen-

addition; P phosphorus-addition; **, P < 0.05 

Factors df Θ LAI 

N 1, 16 1.37** 59.74** 

P 1, 16 0.07 0.001 

Time 16, 1 25713.71** 77177.89** 

N x P 1, 16 0.079 0.0217 

N x Time 16, 1 5256.66** 176.160 

P x Time 16, 1 22.641 133.296 

N x P x Time 16, 1 161.231 194.381 

Table 1: df, degrees of freedom; Θ, volumetric soil moisture; LAI, leaf area index; N, 

nitrogen-addition; P phosphorus-addition; **, P < 0.05 
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Table 2:  Degrees of freedom (df) and F-statistics from the repeated measures ANOVA 

on the effect of N-addition, P-addition and time on the components of ecosystem CO2 

exchange in a restored temperate grassland near Buffalo, New York.  NEE, net ecosystem 

CO2 exchange; GEE, gross ecosystem CO2 exchange; Re, respiration; N, nitrogen-

addition; P, phosphorus-addition; *, P < 0.1; **, P < 0.05   

 

Factors df NEE GEE Re GEEA 

N 1, 16 8.61** 17.24** 10.34** 16.84** 

P 1, 16 0.01 0.25 0.43 0.77 

Time 7, 10 32.22** 47.86** 113.82** 42.32** 

N x P 1, 16 4.73** 1.60 0.14 0.06 

N x Time 7, 10 10.69** 4.12** 3.08* 5.99** 

P x Time 7, 10 0.94 2.12 1.05 2.65 

N x P x 

Time 

7, 10 1.87 0.58 1.13 1.02 

Table 2: df, degrees of freedom; NEE, net ecosystem CO2 exchange; GEE, gross 

ecosystem CO2 exchange; Re, respiration; GEEA, leaf area adjusted-GEE; N, nitrogen-

addition; P, phosphorus-addition; *, P < 0.1; **, P < 0.05   
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Appendix A:  Ecosystem CO2 exchange data organized by date collected.  Values are 

recorded as µmol CO2/m
2
/s 

5/10/2010 

Treatment/Block Re NEE GEE 

C/1 4.17 -2.14 -6.31 

C/2 6.31 -4.52 -10.83 

C/3 5.75 -4.67 -10.43 

C/4 6.09 -5.31 -11.41 

C/5 6.95 -6.19 -13.15 

N/1 8.50 -8.51 -17.02 

N/2 6.50 -5.78 -12.28 

N/3 8.59 -12.51 -21.11 

N/4 6.10 -4.32 -10.42 

N/5 10.57 -11.15 -21.72 

NP/1 8.20 -6.89 -15.10 

NP/2 10.63 -10.50 -21.14 

NP/3 10.73 -8.21 -18.94 

NP/4 10.01 -7.84 -17.85 

NP/5 10.15 -6.21 -16.36 

P/1 4.97 -2.55 -7.52 

P/2 6.29 -7.21 -13.51 

P/3 6.00 -7.07 -13.07 

P/4 6.66 -7.77 -14.44 

P/5 8.63 -7.79 -16.43 

 



48 

 

 

5/25/2010 

Treatment/Block Re NEE GEE 

C/1 13.755 -2.97 -16.73 

C/2 16.64 -5.39 -22.03 

C/3 14.03 -2.44 -16.47 

C/4 12.59 -6.14 -18.73 

C/5 17.36 -1.66 -19.03 

N/1 15.11 -7.70 -22.81 

N/2 18.23 -8.31 -26.55 

N/3 18.33 -8.66 -27.00 

N/4 17.71 -9.78 -27.49 

N/5 19.69 -9.27 -28.96 

NP/1 15.43 -4.75 -20.18 

NP/2 24.09 -5.23 -29.32 

NP/3 18.95 -6.75 -25.71 

NP/4 14.65 -6.66 -21.31 

NP/5 17.70 -7.90 -25.61 

P/1 10.74 -5.08 -15.82 

P/2 14.58 -6.80 -21.39 

P/3 16.66 -3.76 -20.43 

P/4 14.89 -5.60 -20.50 

P/5 16.24 -5.98 -22.23 

 

 

6/18/2010 

Treatment/Block Re NEE GEE 

C/1 11.95 -4.48 -16.43 

C/2 12.21 -6.52 -18.74 

C/3 12.27 -4.48 -16.76 

C/4 13.10 -7.07 -20.18 

C/5 10.59 -4.78 -15.38 

N/1 16.17 -10.81 -26.98 

N/2 15.43 -5.31 -20.74 

N/3 14.18 -8.83 -23.02 

N/4 14.80 -6.97 -21.78 

N/5 15.55 -7.98 -23.54 

NP/1 14.32 -8.74 -23.06 

NP/2 17.51 -6.34 -23.86 

NP/3 13.51 -4.25 -17.76 

NP/4 13.57 -8.38 -21.96 

NP/5 16.79 -7.03 -23.82 

P/1 13.44 -6.67 -20.12 

P/2 17.16 -3.67 -20.84 

P/3 11.50 -5.50 -17.01 

P/4 14.49 -5.42 -19.92 

P/5 14.60 -8.68 -23.29 
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7/2/2010 

Treatment/Block Re NEE GEE 

C/1 11.56 -4.71 -16.27 

C/2 11.43 -3.53 -14.96 

C/3 13.22 -1.99 -15.21 

C/4 14.22 -3.27 -17.49 

C/5 14.06 3.82 -10.24 

N/1 12.61 -6.88 -19.49 

N/2 12.20 -4.22 -16.42 

N/3 14.33 -5.30 -19.64 

N/4 11.04 -5.79 -16.83 

N/5 13.61 -7.53 -21.14 

NP/1 14.71 -6.54 -21.26 

NP/2 12.32 -6.01 -18.33 

NP/3 14.45 -3.48 -17.93 

NP/4 11.01 -5.06 -16.07 

NP/5 14.90 -2.85 -17.76 

P/1 12.95 -5.45 -18.41 

P/2 10.41 -6.06 -16.47 

P/3 15.72 -2.80 -18.53 

P/4 12.95 1.04 -11.91 

P/5 13.29 -4.06 -17.36 

 

7/22/2010 

Treatment/Block Re NEE GEE 

C/1 9.27 -1.35 -10.63 

C/2 8.02 -3.67 -11.70 

C/3 10.50 -3.04 -13.54 

C/4 9.01 -1.74 -10.75 

C/5 10.08 -0.30 -10.38 

N/1 10.10 -2.13 -12.24 

N/2 8.53 -1.07 -9.60 

N/3 7.54 -2.46 -10.01 

N/4 8.94 -2.35 -11.29 

N/5 8.33 -2.51 -10.84 

NP/1 7.36 -1.59 -8.96 

NP/2 9.93 -1.53 -11.46 

NP/3 8.76 -1.26 -10.03 

NP/4 10.96 -1.29 -12.25 

NP/5 8.32 -0.17 -8.50 

P/1 7.91 -2.01 -9.93 

P/2 7.27 -1.93 -9.20 

P/3 9.60 -3.89 -13.49 

P/4 7.28 -3.05 -10.34 

P/5 9.70 -2.45 -12.15 
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8/7/2010 

Treatment/Block Re NEE GEE 

C/1 10.78 -4.25 -15.04 

C/2 10.87 -3.88 -14.75 

C/3 10.72 -3.43 -14.16 

C/4 9.16 -8.77 -17.93 

C/5 11.67 -0.10 -11.78 

N/1 12.63 -3.42 -16.05 

N/2 10.77 -2.99 -13.76 

N/3 13.30 -5.14 -18.44 

N/4 9.47 -3.58 -13.06 

N/5 11.38 -0.87 -12.26 

NP/1 10.39 -1.07 -11.46 

NP/2 13.38 -4.68 -18.07 

NP/3 10.77 -5.05 -15.83 

NP/4 16.05 -2.12 -18.18 

NP/5 11.52 -2.99 -14.52 

P/1 9.40 -2.34 -11.75 

P/2 10.63 -5.23 -15.86 

P/3 10.96 -5.60 -16.57 

P/4 11.74 -2.80 -14.55 

P/5 7.17 -4.25 -11.42 

 

8/29/2010 

Treatment/Block Re NEE GEE 

C/1 10.36 -3.67 -14.04 

C/2 8.46 -4.10 -12.57 

C/3 12.45 -2.74 -15.19 

C/4 7.41 -0.89 -8.312 

C/5 17.04 -2.43 -19.48 

N/1 11.30 -4.05 -15.35 

N/2 6.64 -5.18 -11.82 

N/3 11.41 -4.28 -15.69 

N/4 9.00 -3.81 -12.81 

N/5 10.68 -6.18 -16.86 

NP/1 8.16 -2.82 -10.99 

NP/2 10.60 -6.05 -16.66 

NP/3 9.57 -1.45 -11.02 

NP/4 9.96 -1.35 -11.32 

NP/5 7.19 -3.58 -10.77 

P/1 9.98 -1.37 -11.35 

P/2 10.28 -2.46 -12.75 

P/3 9.62 -2.66 -12.28 

P/4 9.91 -3.27 -13.19 

P/5 9.65 -3.50 -13.15 
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9/26/2010 

Treatment/Block Re NEE GEE 

C/1 7.69 -6.88 -14.57 

C/2 7.41 -6.89 -14.31 

C/3 6.51 -5.71 -12.22 

C/4 6.99 -6.18 -13.18 

C/5 4.80 -5.41 -10.22 

N/1 6.78 -3.88 -10.66 

N/2 7.85 -8.10 -15.96 

N/3 7.56 -5.84 -13.40 

N/4 6.03 -5.79 -11.83 

N/5 6.48 -3.24 -9.73 

NP/1 9.82 -5.58 -15.40 

NP/2 5.94 -4.21 -10.15 

NP/3 5.81 -4.93 -10.74 

NP/4 6.61 -4.58 -11.20 

NP/5 4.90 -3.68 -8.59 

P/1 7.74 -5.89 -13.64 

P/2 5.09 -2.72 -7.81 

P/3 6.70 -5.51 -12.22 

P/4 6.04 -5.86 -11.90 

P/5 2.99 -4.57 -7.57 
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Appendix B:  Volumetric soil moisture (Θ) data recorded as a percentage.  Data are 

organized by date collected. 

4/22/2010 

Treatment: Control Nitrogen Phosphorus N and P 

Block 1 41.3 40.3 39.0 39.6 

Block 2 50.6 48.0 42.0 50.6 

Block 3 54.3 51.3 45.3 57.3 

Block 4 54.3 53.6 51.6 44.6 

Block 5 50.6 47.6 47.6 48.6 

Mean 50.2 48.2 45.1 48.2 

Standard Error 2.3 2.2 2.1 2.9 

 

4/29/2010 

 

Treatment: Control Nitrogen Phosphorus N and P 

Block 1 45.0 42.6 42.0 44.6 

Block 2 48.3 45.3 44.0 50.3 

Block 3 57.0 51.0 44.3 53.6 

Block 4 53.3 52.3 48.6 49.6 

Block 5 46.0 49.3 48.0 46.3 

Mean 49.9 48.1 45.4 48.9 

Standard Error 2.2 1.8 1.2 1.5 

 

5/5/2010 

Treatment: Control Nitrogen Phosphorus N and P 

Block 1 35.0 30.3 37.3 34.0 

Block 2 42.6 34.3 37.3 41.0 

Block 3 49.6 43.6 39.0 43.6 

Block 4 50.3 41.3 45.0 36.0 

Block 5 42.0 35.6 37.6 36.6 

Mean 43.9 37.1 39.2 38.2 

Standard Error 2.8 2.4 1.4 1.7 

 

5/17/2010 

Treatment: Control Nitrogen Phosphorus N and P 

Block 1 43.3 43.0 45.0 44.0 

Block 2 50.6 50.0 46.6 48.3 

Block 3 56.0 49.6 46.6 55.6 

Block 4 52.0 57.6 53.0 47.3 

Block 5 50.6 46.3 48.0 45.6 

Mean 50.5 49.3 47.8 48.2 

Standard Error 2.0 2.4 1.3 2.0 
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5/26/2010 

Treatment: Control Nitrogen Phosphorus N and P 

Block 1 29.6 22.0 28.6 22.6 

Block 2 29.3 25.0 29.0 27.6 

Block 3 41.0 30.0 31.3 33.3 

Block 4 42.3 38.6 40.3 29.3 

Block 5 38.0 26.3 32.3 26.0 

Mean 36.1 28.4 32.3 27.8 

Standard Error 2.7 2.8 2.1 1.7 

 

6/04/2010 

Treatment: Control Nitrogen Phosphorus N and P 

Block 1 32.3 27.3 31.3 29.0 

Block 2 30.3 25.3 34.0 27.0 

Block 3 37.3 28.6 31.3 30.0 

Block 4 38.3 34.6 36.0 25.0 

Block 5 33.0 25.6 29.3 28.6 

Mean 34.2 28.3 32.4 27.9 

Standard Error 1.5 1.6 1.1 0.8 

 

6/11/2010 

Treatment: Control Nitrogen Phosphorus N and P 

Block 1 51.0 49.6 51.0 53.6 

Block 2 53.6 51.6 50.3 49.6 

Block 3 57.0 54.6 51.3 55.3 

Block 4 51.3 51.6 53.3 47.3 

Block 5 50.3 46.0 47.0 47.6 

Mean 52.6 50.7 50.6 50.7 

Standard Error 1.2 1.4 1.0 1.6 

 

6/17/2010 

Treatment: Control Nitrogen Phosphorus N and P 

Block 1 42.3 39.6 41.0 42.0 

Block 2 39.6 37.0 41.6 39.6 

Block 3 48.0 43.0 42.3 47.0 

Block 4 48.3 46.6 42.3 47.0 

Block 5 41.6 38.3 35.0 36.6 

Mean 44.0 40.9 40.4 42.4 

Standard Error 1.7 1.7 1.3 2.0 
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6/30/2010 

Treatment: Control Nitrogen Phosphorus N and P 

Block 1 36.0 30.6 34.6 31.3 

Block 2 31.6 22.6 37.6 25.0 

Block 3 38.3 24.0 31.6 26.0 

Block 4 37.0 32.6 37.3 28.6 

Block 5 30.6 25.0 26.3 22.33 

Mean 34.7 27.0 33.5 26.6 

Standard Error 1.5 1.9 2.1 1.5 

 

7/11/2010 

 

 

7/18/2010 

Treatment: Control Nitrogen Phosphorus N and P 

Block 1 13.3 11.0 12.0 12.3 

Block 2 10.0 8.3 13.3 10.0 

Block 3 11.6 9.3 10.0 7.6 

Block 4 10.6 12.3 12.0 9.0 

Block 5 9.3 9.3 9.0 6.6 

Mean 11.0 10.1 11.2 9.1 

Standard Error 0.7 0.7 0.7 0.9 

 

7/26/2010 

Treatment: Control Nitrogen Phosphorus N and P 

Block 1 32.3 31.0 32.6 33.0 

Block 2 32.3 28.3 31.3 24.6 

Block 3 30.6 27.3 28.0 25.6 

Block 4 28.6 28.3 28.3 23.0 

Block 5 28.3 26.0 25.0 21.6 

Mean 30.4 28.2 29.1 25.6 

Standard Error 0.8 0.8 1.3 1.9 

 

 

 

 

 

Treatment: Control Nitrogen Phosphorus N and P 

Block 1 21.3 18.3 20.0 19.6 

Block 2 20.6 13.0 21.6 15.3 

Block 3 21.0 11.3 16.3 14.0 

Block 4 18.3 19.0 17.6 16.3 

Block 5 14.6 11.6 15.6 14.3 

Mean 19.2 14.6 18.2 15.9 

Standard Error 1.2 1.6 1.1 1.0 
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8/02/2010 

Treatment: Control Nitrogen Phosphorus N and P 

Block 1 17.0 13.6 18.6 15.0 

Block 2 14.0 10.6 18.0 9.3 

Block 3 11.0 7.0 10.6 8.0 

Block 4 13.3 9.3 12.0 9.0 

Block 5 12.0 9.3 10.6 8.3 

Mean 13.4 10.0 14.0 9.9 

Standard Error 1.0 1.1 1.7 1.2 

 

8/11/2010 

Treatment: Control Nitrogen Phosphorus N and P 

Block 1 22.6 15.6 22.0 19.6 

Block 2 22.6 14.6 23.3 14.0 

Block 3 22.3 13.6 19.0 11.3 

Block 4 19.6 18.6 20.3 15.0 

Block 5 19.6 17.3 17.6 12.0 

Mean 21.4 16.0 20.5 14.4 

Standard Error 0.7 0.9 1.0 1.5 

 

8/20/2010 

Treatment: Control Nitrogen Phosphorus N and P 

Block 1 15.6 9.3 14.3 14.3 

Block 2 13.6 9.6 10.3 11.3 

Block 3 14.6 7.0 8.0 6.0 

Block 4 12.33 9.6 11.0 9.3 

Block 5 14.0 9.3 11.6 12.0 

Mean 14.1 9.0 11.1 10.6 

Standard Error 0.6 0.5 1.0 1.4 

 

8/26/2010 

Treatment: Control Nitrogen Phosphorus N and P 

Block 1 18.3 17.6 23.3 16.0 

Block 2 13.6 11.6 18.3 13.0 

Block 3 16.0 11.6 13.3 10.3 

Block 4 15.0 11.0 12.0 8.3 

Block 5 16.6 6.0 13.0 13.0 

Mean 15.9 11.6 16.0 12.1 

Standard Error 0.8 1.9 2.1 1.3 
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9/02/2010 

Treatment: Control Nitrogen Phosphorus N and P 

Block 1 9.0 5.3 6.3 6.3 

Block 2 8.6 6.0 8.0 5.0 

Block 3 7.3 4.0 5.3 4.3 

Block 4 7.6 7.6 8.6 6.3 

Block 5 9.0 5.3 7.3 7.0 

Mean 8.3 5.6 7.1 5.8 

Standard Error 0.3 0.6 0.6 0.5 

 

9/15/2010 

Treatment: Control Nitrogen Phosphorus N and P 

Block 1 13.3 8.0 12.0 10.0 

Block 2 6.0 6.0 9.3 6.0 

Block 3 8.6 4.6 7.3 4.3 

Block 4 7.6 6.6 6.3 6.0 

Block 5 8.0 4.3 7.0 4.6 

Mean 8.7 5.9 8.4 6.2 

Standard Error 1.2 0.7 1.0 1.0 

 

10/01/2010 

Treatment: Control Nitrogen Phosphorus N and P 

Block 1 19.3 15.0 23.6 18.0 

Block 2 18.3 15.0 18.0 15.3 

Block 3 18.6 13.3 16.0 14.3 

Block 4 18.6 13.3 15.3 15.0 

Block 5 17.6 12.6 18.6 14.3 

Mean 18.5 13.9 18.3 15.4 

Standard Error 0.3 0.5 1.5 0.7 

 

10/08/2010 

Treatment: Control Nitrogen Phosphorus N and P 

Block 1 25.3 23.0 34.6 27.3 

Block 2 20.0 24.3 27.0 21.6 

Block 3 24.3 15.6 19.3 20.3 

Block 4 24.0 24.0 22.3 17.0 

Block 5 19.3 15.6 18.6 18.6 

Mean 22.6 20.5 24.4 21.0 

Standard Error 1.2 2.0 3.0 1.8 
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Appendix C:  LAI measurements over the 2010 growing season (This is measured as a 

ratio and is a unitless number.)  These data are organized by treatment: C, control; N, 

nitrogen; P, phosphorus; NP, nitrogen and phosphorus 

 Block 1 C Block 2 C Block 3 C Block 4 C Block 5 C 

4/22/2010 0.14 0.30 0.11 0.13 0.18 

4/29/2010 0.19 0.35 0.10 0.16 0.08 

5/5/2010 0.36 0.64 0.46 0.50 0.55 

5/19/2010 0.63 1.35 0.75 1.12 0.98 

5/26/2010 0.77 0.77 0.82 0.52 0.67 

6/4/2010 0.91 1.99 1.28 1.08 0.91 

6/11/2010 1.02 1.91 1.45 1.74 1.47 

7/1/2010 2.11 4.28 2.62 2.22 2.34 

7/11/2010 1.34 3.19 1.94 1.59 2.18 

7/18/2010 1.45 2.36 1.90 1.62 1.79 

7/26/2010 3.26 3.54 3.15 3.39 3.09 

8/11/2010 4.17 4.50 2.95 3.65 3.39 

8/20/2010 3.84 4.59 3.46 3.33 3.52 

8/27/2010 3.49 3.64 3.41 3.86 3.14 

9/2/2010 5.19 5.33 4.87 4.97 5.12 

9/15/2010 4.63 5.02 5.02 4.66 4.24 

10/8/2010 5.22 5.15 4.86 5.40 4.82 

 Block 1 N Block 2 N Block 3 N Block 4 N Block 5 N 

4/22/2010 0.40 0.38 0.24 0.34 0.23 

4/29/2010 0.35 0.16 0.23 0.13 0.25 

5/5/2010 1.11 0.96 1.11 1.12 0.85 

5/19/2010 1.42 3.05 2.18 2.28 3.37 

5/26/2010 1.27 2.25 2.06 2.14 2.35 

6/4/2010 2.23 2.51 3.63 3.06 2.68 

6/11/2010 3.10 2.60 4.35 4.93 3.30 

7/1/2010 4.63 4.85 4.79 5.58 4.25 

7/11/2010 3.58 5.02 4.49 4.79 3.82 

7/18/2010 3.44 2.36 4.26 4.30 3.25 

7/26/2010 5.52 4.18 5.53 5.83 5.01 

8/11/2010 6.18 4.36 5.54 4.82 5.71 

8/20/2010 6.10 4.36 5.88 6.10 5.31 

8/27/2010 5.66 4.41 6.86 6.09 5.26 

9/2/2010 5.18 5.67 7.48 6.61 6.04 

9/15/2010 6.76 5.30 6.74 7.41 6.66 

10/8/2010 7.03 5.92 7.17 7.91 6.91 
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Block 1 P 

 

 

 

 

 

Block 2 P 

 

 

 

 

 

Block 3 P 

 

 

 

 

 

Block 4 P 

 

 

 

 

 

Block 5 P 

4/22/2010 0.19 0.20 0.17 0.13 0.28 

4/29/2010 0.21 0.17 0.16 0.16 0.12 

5/5/2010 0.50 0.53 0.39 0.58 1.01 

5/19/2010 0.54 0.83 1.02 1.09 2.05 

5/26/2010 0.99 0.85 0.82 1.29 1.38 

6/4/2010 1.03 0.93 0.97 1.43 2.73 

6/11/2010 1.45 1.12 1.61 1.92 2.94 

7/1/2010 2.33 1.66 2.21 2.83 3.50 

7/11/2010 1.34 2.38 2.13 2.88 3.46 

7/18/2010 1.82 1.87 1.68 2.67 2.91 

7/26/2010 2.87 2.66 3.21 3.88 4.90 

8/11/2010 3.12 2.78 3.06 4.08 4.57 

8/20/2010 2.88 3.71 3.30 3.76 4.77 

8/27/2010 2.01 3.20 4.02 3.77 4.82 

9/2/2010 4.91 4.77 5.29 4.91 6.77 

9/15/2010 4.20 4.21 4.14 4.94 5.82 

10/8/2010 5.01 4.50 5.04 5.12 6.66 

 Block 1 NP Block 2 NP Block 3 NP Block 4 NP Block 5 NP 

4/22/2010 0.21 0.26 0.27 0.28 0.25 

4/29/2010 0.20 0.23 0.26 0.18 0.31 

5/5/2010 0.42 0.91 0.99 1.30 1.19 

5/19/2010 1.15 1.53 2.60 3.01 2.88 

5/26/2010 0.88 1.64 1.98 2.11 2.34 

6/4/2010 1.45 2.26 3.08 3.15 3.89 

6/11/2010 1.77 3.68 3.41 3.74 4.76 

7/1/2010 4.35 4.71 4.86 5.03 5.03 

7/11/2010 3.77 5.20 3.53 4.10 4.28 

7/18/2010 2.65 3.64 3.68 3.07 3.46 

7/26/2010 5.22 5.01 5.10 4.95 5.63 

8/11/2010 5.33 4.83 4.53 5.78 4.90 

8/20/2010 5.42 5.81 5.37 5.88 5.51 

8/27/2010 4.81 5.88 4.81 5.79 5.70 

9/2/2010 5.72 6.16 7.17 6.62 7.75 

9/15/2010 5.95 6.08 5.42 7.04 6.4 

10/8/2010 6.57 7.50 5.68 7.85 7.15 
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Appendix D:  Live, litter and forb biomass (g/m
2
) 

Treatment/Block Live biomass Litter biomass Forb biomass 

C/1 520 77  

C/2 582 153 0.1 

C/3 365 170  

C/4 626 125  

C/5 429 114  

N/1 455 620  

N/2 551 166 0.4 

N/3 643 92  

N/4 688 33  

N/5 656 138  

NP/1 589 28 1.3 

NP/2 989 100  

NP/3 524 105 0.5 

NP/4 753 60  

NP/5 684 114 0.2 

P/1 185 365 0.1 

P/2 470 156 0.3 

P/3 402 137  

P/4 413 89  

P/5 648 93  
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