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ABSTRACT OF THESIS 

 

Structural Analysis of the Drosophila Innexin ShakB: 

 Role of the N-Terminus in Rectifying Electrical Synapses  

 

    Gap junction channels mediate direct intercellular communication in all multicellular animals.  

They are comprised of the connexin family of proteins in vertebrates and the innexin family in 

prechordates.  Connexins and innexins share many functional and structural similarities as 

orthologous proteins.  Both types are capable of forming electrical synapses.  Rectifying 

junctions are specialized electrical synapses found in neural systems that control escape 

responses.  It has been shown that heterotypic gap junction channels mediate asymmetric 

properties of rectifying junctions.  Shaking B N+16 and Shaking B lethal are variants of the 

ShakB locus in Drosophila and the organization of these innexins into heterotypic junctions 

underlies electrical rectification in the Giant Fiber System. The goal of this study was to further 

explore molecular mechanisms of rectification by establishing the role of the N-terminus.  After 

creating a series of deletions and chimeric proteins in which the N-terminus of the innexin 

Shaking B Lethal was modified, proteins were characterized in paired Xenopus oocytes and 

analyzed electrophysiologically.  Deletion of the N-terminus of Shaking B lethal resulted in loss 

of function.  Replacing the N-terminus with that of Shaking B N+16 produced a chimeric protein 

that formed rectifying junctions when paired with wildtype, thus demonstrating that the N-

terminus of innexins is crucial for channel function and plays a key role in rectification. The 

chimera gated symmetrically with characteristics similar to those of ShakB L, when paired 

homotypically, providing insight into the mechanism of voltage gating.
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Introduction 

Gap junctions 

     A gap junction is a physiological feature of multicellular animals that is crucial for cell to cell 

communication (Laird, 2006). In vertebrates, the connexin family of proteins forms gap 

junctions, while prechordates utilize innexin-based gap junctions (Phelan, et al., 1998b).  As 

shown below in Figure 1, connexins are multi-pass membrane proteins with cytoplasmic 

carboxyl (C) and amino (N) termini as well as four transmembrane domains (M1-M4), two 

extracellular domains (E1/E2) and a cytoplasmic loop (CL) (Laird, 2006).  Innexins share a 

similar structure and function with connexins, although genetically the two protein groups are 

not homologous (Phelan et al., 1998b), and connexins are believed to have evolved convergently 

(Alexopoulos et al., 2004).   

 

Figure 1 

    Figure 1. Membrane topology of connexin proteins.  Gap junction proteins have four 

transmembrane domains (M1-M4), two extracellular domains (E1-E2), a cytoplasmic loop 

(CL) and amino (AT) and carboxyl (CT) termini (Laird, 2006). Reproduced with permission, 

from Laird, D. 2006.  Biochem. J., 394, 527-543. © the Biochemical Society.  
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     While not much is known about innexin structure and function, it is well documented that 

connexins oligimerize into hexamers to form connexons in adjacent cells before docking to 

create intercellular channels (Figure 2). Connexons are composed either of identical or non-

identical connexin subunits. For example, humans express 20 different connexin proteins with 

overlapping expression patterns (Laird, 2006).  If all six proteins comprising a connexon are 

identical, the connexon is homomeric, and when non-identical, the connexon is heteromeric 

(Laird, 2006).  At sites of cell-cell communication, a connexon from one cell docks with a 

connexon in a neighboring cell, creating a gap junction channel.  As shown in figure 2, the intact 

channel can be described using nomenclature similar to that used for the constituent halves. If the 

two hemichannels are identical, the junction is homotypic, if non-identical, the junction is 

heterotypic.   

 

Figure 2 

     Figure 2. Connexin proteins form connexons, also known as hemichannels, composed of 

six proteins, which can be the same or different.  Complete channels are formed by two 

hemichannels, and need not be composed of the same hemichannel type (Laird, 2006). 

Reproduced with permission, from Laird, D. 2006.  Biochem. J., 394, 527-543. © the 

Biochemical Society. 

 

     It is typical that hundreds of gap junction channels cluster together in one area, creating a gap 

junction plaque, characterized by the close apposition of cells (Laird, 2006). It is generally 

assumed that connexins and innexins oligimerize similarly to form gap junction channels. 

Electron micrographs demonstrate that arthropod gap junctions have a similar appearance to 



3 

 

connexin-based junctions with a slightly wider gap than that observed in vertebrates (Leitch, 

1992; Blagburn et al., 1999).   

     Gap junctions facilitate the transport of small, biologically important molecules between cells, 

allowing for diffusion within tissue and direct intercellular communication (Harris, 2001). Gap 

junctions also play an important role in electrical coupling. Heart tissue is known to use gap 

junctions to transmit electrical impulses required for atrio-ventricular contraction. Electrical 

synapses in the nervous system of vertebrates and invertebrates, are also composed of gap 

junctions (Willecke et al., 2002; Phelan et al., 1998b.).  At the site of an electrical synapse 

between neurons, an action potential traveling along an axon is transmitted through the gap 

junction into the next neuron.  This allows for faster transmission than a chemical synapse and 

also for regulation by a wide range of physiological factors (reviewed in Bear et al., 2007).  Gap 

junction channels can exist in either an open or closed conformation, which can be altered via 

protein binding, phosphorylation, calcium, or voltage (In Bear et al., 2007; Karp, 2008). 

  

The N-terminus and junction channel physiology 

     Connexins and innexins, have similar topologies despite having variations in primary 

structure (Phelan et al., 1998b).  Two extracellular loops play a role in docking of hemichannels, 

and three distinct cytoplasmic domains are created by a cytoplasmic loop, in addition to the C 

and N termini as previously shown in Figure 1.  The C-terminus and cytoplasmic loops play 

important roles in chemical gating of connexins (Peracchia, 2004), while multiple regions 

including the transmembrane domains, cytoplasmic loop, and amino terminus, work together to 

form the voltage gating mechanism (Harris 2001).  
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     The average connexin N-terminus chain is 20-22 amino acid residues in length (as seen in 

figure 1), and has a highly conserved sequence.  The structure and function of the N-terminus has 

been studied most extensively in connexin 37 where residues 5 through 17 form an alpha helix 

and residues 18-22 form a flexible, helix-like structure (Kyle et al. 2009).  Deletion of 

approximately half of the N-terminal residues causes the connexin to fail to localize at the 

cellular membrane.  Smaller deletions cause loss of function without loss of membrane 

localization. When a series of amino acids ranging from 2 to 5 residues in length are replaced 

with alanine, the resultant gap junctions are not functional, suggesting that not only is the size of 

the chain important, but the specific sequence as well (Kyle et al. 2008.).   Replacement of as 

few as two amino acids, 10 and 15 specifically, with alanine in connexin 37 causes a loss 

function (Kyle et al. 2009). 

     In another experiment, the N-terminus of chicken connexin 45.6 was replaced with the N-

terminus of rat connexin 43.  The channels composed of the chimeric proteins behaved 

differently than the channels composed of either connexin 45.6 or 43, however, the chimeric 

channels functioned more like rat connexin 43 than chicken connexin 45.6, from which most of 

the protein originated.  The chimeric proteins behaved similarly to the protein from which the N-

terminus was taken in voltage sensitivity and in selectivity based on size or charge.  This further 

suggests that the sequence of the N-terminus plays a significant role in determining the function 

of the channel (Dong et al., 2006). 

     In the crystal structure of a gap junction channel composed of connexin 26, the first thirteen 

residues in the N-terminus form a short helix that folds into the pore (Figure 3a; Maeda et al., 

2009).   This is consistent with earlier electron cryocrystallography which demonstrated the 

presence of a plug within the pore (Figure 3b; Oshima et al., 2007).  Research suggests that the 
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plug is created when the N-termini of the constituent connexins fold into the channel as seen in 

the side-view of the gap junction structure after X-ray diffraction (figure 3a; Maeda et al., 2009) 

and the top down view of the gap junction after cryo-electron microscopy (Figure 3b; Oshima et 

al., 2007). This is consistent with studies where Cx26 mutants missing portions of the N-

terminus showed a significantly decreased mass within the pore, and the channels lost 

functionality (Oshima et al., 2008).  

 

Figure 3 

     Figure 3. (A) Three dimensional structure after X-ray diffraction of the channel formed by 

connexin 26.  The negatively charged path in the extracellular cavity is believed to be a site for 

interaction with the charged residues in the N-terminal tail (Maeda et al, 2009). Reprinted with 

permission from Macmillan Publishers Ltd: Maeda S.  Nakagawa S.  Suga M.  Yamashita E.  

Oshima A.  Fujiyoshi I.  Tuskihara T.  Structure of the connexin 26 gap junction channel at 

3.5A° resolution.  Nature.  2009;458: 597-607. (c) 2009 .  (B) Cryo-Electron Microscopy 

model of a Connexin 26 hemichannel with a plug in the central pore.  The view is from the 

extracellular surface looking down through the pore into the cell (Oshima et al., 2007) 

Reprinted with permission from the National Academy of Sciences. Oshima, A.,  Tani, K.,  

Hiroaki, Y.,  Fujiyoshi, I., and  Sosinsky, G.E. 2007.  Three-dimensional 
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structure of a human connexin26 gap junction channel reveals a plug in the vestibule.  Proc 

Natl. Acad. Sci (USA): 104: 10034-10039.  © (2007) National academy of Sciences, U.S.A. 

  

 

     Positioning the N-terminal chain within the pore infers interactions with residues of the pore-

lining helices.  Such interactions were recently identified through tryptophan-scanning analysis 

of Cx32 (Brennan et al., in prep.). The results of scanning mutagenesis correlate with the crystal 

structure of Cx26 which identifies an interaction between W2 in the N-terminus and M34 in the 

first transmembrane domain, the main pore-lining domain (Maeda et al., 2009).  Tryptophan 

scanning suggests similar interactions in channels composed of Cx43 (Brennan et al., in prep), 

while interactions between the N-terminus and the first transmembrane domain were not detected 

in innexin-based channels (DePriest et al, 2011).     

   

Rectification 

     Typical gap junctions are bidirectional in the sense that ions and molecules travel equally well 

in both directions (Karp, 2008). However, some electrical synapses favor the transmission of 

electrical signals in one direction, a phenomenon referred to as electrical rectification. Rectifying 

junctions pass current more easily in one direction than another.  Generally, when the 

presynaptic cell is depolarized relative to the postsynaptic cell, junctional resistance is 

minimized.  This is demonstrated in the simplified circuit diagram in Figure 4 where the 

presynaptic fiber is depolarized relative to the postsynaptic fiber. 

     Rectifying synapses have been identified in the Giant Fiber System (GFS) of crayfish 

(Furshpan and Potter, 1959; Jaslove and Brink, 1980) and Drosophila (Phelan et al., 1996). In 

crayfish, the rectifying synapse between the giant interneuron and the motor giant axon has been 

well characterized using electrophysiological techniques (Jaslove and Brink, 1980).  In 
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Drosophila, rectifying synapses at the junction of the giant fiber and tergotrochanteral motor 

neurons (TTMns) and at the junction of the Giant Fiber and the peripherally synapsing 

interneurons (PSIs) have been characterized using a variety of techniques (Allen et al., 2006, 

Phelan et al., 2008).  Both synapses relay signals to the dorsal longitudinal muscle during the 

escape response, where rapid neural transmission is advantageous (Allen et al., 2006).   

     Rectifying synapses have also been found in some chordates as well. Lampreys have a system 

that has a very similar neuroanatomy to the arthropod GFS, with rectifying synapses co-

occurring with chemical synapses (Ringham, 1975). Hatchetfish also have a rectifying synapse 

that has been shown to play a role in its escape response (Auerbach & Bennett, 1969).    

 

 

  Figure 4 

     Figure 4. Electrical diagram showing the activity of a rectifying synapse as proposed by 

Furshpan and Potter (1959).  R1 and R2 represent the proposed resistance of the pre- and post- 

synaptic membrane respectively.  The electrical synapse (dashed line) is noted as a rectifier 

and will conduct current when the presynaptic axon is depolarized relative to the postsynaptic 

cell.  The postsynaptic fiber is hyperpolarized prior to the junction opening, further 

hyperpolarization would similarly cause and increase in junctional conductance.  In both cases, 

electrical transmission only flows in one direction.  Hyperpolarizing the presynaptic axon or 

depolarizing the postsynaptic axon maintains that non–conductive state of the junction. 

Redrawn from Furshpan & Potter, 1959.   
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     In 1959, Furshpan and Potter suggested that electrical rectification in the GFS of crayfish 

could be attributed to a variable resistance between two cell membranes caused by an 

asymmetrically structured junction.  Jaslove and Brink (1980) later attributed electrical 

rectification to rapid and asymmetric voltage-gating of gap junction channels at the synapse.  It 

has since been found that rectifying electrical synapses in Drosophila are heterotypic junctions 

(Phelan et al., 2008).  On the presynaptic side of the GF axon, Shaking B Neural+16 (ShakB 

N+16) is found.  Postsynaptically, in either the TTMns or in the PSIs, Shaking B lethal (ShakB 

L) is present (Phelan et al., 2008).  Exogenous expression of Drosophila innexins in Xenopus 

allows experimental analysis of junctions composed of ShakB N+16 in one cell, and ShakB L in 

the other (Phelan et al., 2008).  This experiment demonstrated that rectifying junctions could be 

created through heterotypic pairing as shown in figure 5.  Rectification appears to be 

instantaneous, meaning that current flows more easily in one direction than in another 

immediately upon changes in transjunctional voltage (Vj), shown in figures 5a and 5c.  As 

expected, junctions composed entirely of either ShakB N+16 or ShakB L showed symmetrical 

responses to voltage, shown in figures 5f and 5h (Phelan et al., 2008).  
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Figure 5 

   Figure 5.  Figures 5A through 5E. Current traces and voltage sensitivity of rectifying gap 

junctions composed of ShakB N+16 and Shak B L.  Figures 5F through 5J.  Current traces and 

voltage sensitivity of homotypic ShakB junctions.  5A shows currents induced in Xenopus 

oocytes expressing ShakB N+16 and Shak B L, with currents recorded relative to the N+16-

expressing cell.  5B is a voltage protocol trace.  5C shows currents induced in Xenopus oocytes 

expressing ShakB N+16 and Shak B L, with currents recorded relative to the L-expressing cell.  

5D depicts the relationship between transjunctional voltage and junctional conductance, 

relative to N+16 in heteroptypic pairings.  The data has been fit with a Boltzman equation.  

Figure 5E depicts the relationship between transjunctional voltage and junctional conductance, 

relative to L in heteroptypic pairings.  The data has been fit with a Boltzman equation. 5F 

shows currents induced by a typical N+16 homotypic pairing and the voltage pulse protocol is 

shown in 5G.  5H shows currents induced by a typical L homotypic pairing.  5I depicts the 

relationship between transjunctional voltage and junctional conductance for N+16 homotypic 

pairings.  The data has been fit with a Boltzman equation. 5J depicts the relationship between 

transjunctional voltage and junctional conductance, relative to N+16 in heteroptypic pairings.  

The data has been fit with a Boltzman equation. (from Phelan, et al., 2008).  Reprinted from 

Curr. Biol. 18,  Phelan, P.,  Goulding, L.A.,  Tam, J.L.Y.,  Allen, M.J.,  Dawber, R.J.,  Davies, 

J.A., and Bacon J.P.,  Molecular Mechanism of Rectification in the Drosophila Giant Fiber 

System. Pages No. 1955-1960. © (2007), With permission from Elsevier.  
 

 

      In connexin-based channels two types of rectification are apparent. Both have been studied at 

the molecular level.  One form of rectification results from the pairing of hemichannels with 

different sensitivities to voltage (Verselis et al., 1994, reviewed in Harris, 2001).  The other form 

of rectification is known as “instantaneous” rectification.  It occurs less frequently and appears to 
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result from asymmetry in the conduction pathway that is independent of the conformational 

changes associated with voltage gating (Rubin et al., 1992a; Rubin et al., 1992b).  In the latter 

case rectification can result in channels that exhibit a novel response to voltage that would not be 

predicted by adding the voltage response of the two constituent hemichannels.  A variety of 

factors associated with protein-protein interaction may give rise to the novel effect, including 

interactions between the extracellular loops of the apposed hemichannels.  In studying 

rectification associated with heterotypic Cx32/Cx26 junctions, Rubin et al. (1992b) created 

chimeric proteins in which the E1 loop of connexin 32 was replaced with that of connexin 26.  

The rectification was not abolished but voltage-dependent activity was decreased, suggesting a 

role for E1 in rectification. 

     To more specifically identify the molecular components of rectification, amino acids 41 and 

42 of connexin 26 were replaced with corresponding residues from connexin 32.  In heterotypic 

pairings, a novel form of rectification was observed, different from the normal rectification 

response or the response of chimeric connexins (Rubin et al., 1992a). In a similar study, the first 

and second extracellular loops and the third transmembrane domain of Cx32 were replaced with 

the corresponding domains of Cx26 (Rubin et al., 1992b).   Some degree of rectification was lost 

with additional changes to voltage-gating.  These early studies highlight the complexity of 

identifying molecular components of rectification.  They also highlight the complexity of 

identifying an instantaneous component of rectification that is independent of voltage-gating 

mechanisms. 

     Oh et al. (1999, 2000) studied voltage-dependent rectification in gap junction channels, a 

form of rectification that arises from opposite voltage gating polarity of constituent 

hemichannels.  This type of rectification is predicted by the behavior of individual hemichannels. 
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Channels composed of connexin32 close in response to relatively negative voltage while 

channels composed of connexin26 close in response to relatively positive voltages.  Heterotypic 

Cx32/Cx26 junctions form rectifying junctions that gate only in response to one voltage polarity.  

Oh et al. (1999) showed that changing one residue in the N terminus reversed gating polarity.   

Replacement of the second residue with either a charged or a neutral residue (N2D) reversed the 

gating polarity of Cx26 channels (Oh et al., 2000).   Further analysis involved the creation of 

chimeric proteins. The first 11 residues of the N-terminus of connexin 32, and the cytoplasmic 

loop of connexin 32 were replaced with the corresponding domains from connexin 26.  Distinct 

patterns of rectification were observed for gap junctions composed of the chimeric connexin 32 

paired with normal connexin 32.  However, a simpler chimeric connexin 32 in which only the N-

terminus was exchanged with that of Cx26 failed to display typical rectification suggesting that 

an interaction between the N-terminus and the cytoplasmic loop may be required for voltage-

dependent rectification (Oh, et al. 1999). 

     This study is aimed at determining whether the N-terminus of ShakB N+16, contributes to the 

strong electrical rectification observed at heterotypic junctions composed of ShakB N+16 and 

ShakB L.  These are the proteins known to compose the rectifying synapses in the Drosophila 

melanogaster giant fiber system (Phelan et al., 2008).  Interest in the N-terminus is based on 

studies of connexins where it has been demonstrated that charged residues in the N-terminus play 

a role in determining the physiological properties of the channel (Oh et al., 1999). The crystal 

structure of a gap junction channel composed of connexin 26 shows the N-terminus drawn into 

the pore, interacting directly with the first transmembrane domain and contributing to the 

permeation path of the pore (Maeda et al., 2009).  It is not yet known whether innexins utilize 

the N-terminus in a similar way.  The fact that innexins and connexins function similarly and 
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appear structurally similar suggests that the N terminus will play a similar role.  However, 

innexins are most closely related to the pannexin family of proteins and it has recently been 

demonstrated that conduction pathway of pannexins is complex and likely to involve 

contributions for the C-terminus (Wang & Dahl, 2010).  The work performed in this study, 

involving chimeras of Shaking B proteins, demonstrates an important role of the N-terminus in 

heterotypic junction channels composed of innexins.    

 

The Drosophila melanogaster Giant Fiber System  

 The rectifying junction of ShakB L and ShakB N+16 in vivo is found in the Giant Fiber 

System of the fruit fly, which mediates the escape responses involved in simultaneous jumping 

and flight (Allen et al., 2006; Phelan et al., 2008).   As noted in figure 6, two neurons originate in 

the brain, run along the ventral nerve cord, and fork out at the second pair of legs. These are the 

Giant Fibers.  In the “brain region”, the two Giant Fibers are linked by the Giant Commisural 

Interneurons (GCIs).  At the fork, a large synaptic region is found between the GFs and the 

TTMns. The TTMns innervate the tergotrochanteral muscle, which is responsible for the 

jumping portion of the escape reponse.  Just prior to the fork, the GFs also synapse with the PSIs.  

The PSIs then synapse electrically with the Dorsal Longitutinal Motor neurons (DLMns), which 

innervate the Dorsal Longitudinal muscles which cause the wings to flap.  Rectifying synapses 

are found between the GFs and the TTMns, and between the GFs and the PSIs, and are noted 

with arrows in figure 6 (Allen et al., 2006).  Electrical synapses found in the brain region, and 

between the PSIs and DLMns are not rectifiers, but are composed of ShakB N+16, with a small 

number of junctions composed of Shaking B Neural (Phelan et al., 2008). Both rectifying 
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synapses are localized in a mixed synaptic region, containing both electrical synapses and 

chemical synapses (Allen et al. 2006).   

 

Figure 6 

     Figure 6.  (A)Three dimensional rendering of the neurons in the Giant Fiber System of 

Drosophila melanogaster and their location relative to brain structures and relevant muscle 

groups. Arrows denote the regions where rectifying synapses are found. (B) A schematic of 

connections between the neurons that compose the GFS.  GCI (orange) denotes Giant 

Commisural Interneurons.  GF (red) denotes Giant Fiber.  PSI (green) denotes Peripherally 

Synapsing Interneuron. TTM (brown) denotes Tergotrochanteral muscle, or leg muscle.  

TTMn (blue) denotes Tergotrochanteral Motor Neuron. DLMs (pink) denotes Dorsal 

Longitudinal Muscles, or wing muscles.  DLMns (yellow) denotes Dorsal Longitudinal Motor 

Neurons.  Rectifying synapses are found at the junctions between the GF and the PSI, and the 

GF and the TTMn, and are accompanied by chemical synapses. Non-Rectifying electric 

synapses are found between the GFs and the GCIs, the TTMn and the PSI, and the PSI and the 

DLMns.   (Allen et al, 2006).  Reprinted from Sem. Cell Dev. Biol.17. Allen, M.J., 

Godenschwege, T.A., Tanoyue, M.A., Phelan, P.  Making an escape: Development and 

function of the Drosophila Giant Fiber System. Pages No. 31-41. © (2006), with permission 

from Elsevier.  
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Methods 

Primer Design and Mutagenesis 

       Drosophila shaking-B (Lethal) was cloned into pSPJC2L and was a generous gift from Dr. 

Pauline Phelan (Univ. of Kent).  Plasmid DNA was amplified after transformation into Top10 

cells (Life Technologies Inc, Grand Island, NY) and overnight growth at 37 degrees in media 

supplemented with ampicillin.  The following day, plasmid DNA was isolated using a Qiaprep 

kit (Qiagen Inc., Valencia, CA)  Mutagenesis was performed using a Quikchange Lightning® 

mutagenesis kit (Agilent Technologies - Stratagene Products, Santa Clara, CA). Mutagenic 

primers were designed using the QuikChange® Primer Design Program (Agilent Technologies - 

Stratagene Products, Santa Clara, CA) .  Insertion primers were designed based on sequence 

analysis performed using ClustalW (Biology Workbench, SDSC).  The rationale for primer 

design was as follows.  First, a whole domain deletion of the N-Terminus of ShakB L (L2 

through T19) was performed. Second, the whole N-terminus of ShakB N+16 (E2 through I24)  

was inserted into the construct lacking the ShakB L N-terminus, creating a hybrid ShakB L with 

the N-terminus of ShakB N+16.  Mutagenesis reactions were performed as described in the 

Stratagene Quikchange Lightning protocol (Agilent Technologies - Stratagene Products, Santa 

Clara, CA).  Mutations were confirmed by sequencing through the coding region (Roswell Park 

Cancer Institute DNA Sequencing Facility, Buffalo, NY) and Biology Workbench was used to 

align sequences and confirm that the desired insertions and deletions were created.  Once DNA 

sequences were confirmed, constructs were used as templates to make RNA.   Figure 7a shows 

the map of the vector pSPJC2L with ShakB L inserted within the multiple cloning region.  Note 

the SP6 priming site for RNA polymerase is slightly upstream of the gene and can be used to 

transcribe RNA in vitro.  The SP6 site was also used as the priming site for sequence analysis.  
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Figure 7b shows the P-element construct containing ShakB N+16, which is ideal for future 

studies involving in vivo analysis of Shaking B function.   The amino acid sequences of ShakB L 

and ShakB N + 16 are compared in Figure 7c.  The similar proteins are produced as transcript 

variants of the ShakB locus (Phelan and Starich, 2001).  
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Figure 7 

 

     Figure 7.  Vector maps of (A) Shaking B lethal and (B) Shaking B (N+16) showing the 

orientation of the genes in the vectors provided by Dr. Pauline Phelan (Univ. of Kent).  

Shaking B lethal is inserted in pSPJC2L and is downstream of the SP6 promoter used to 

synthesize RNA.  The SP6 promoter is also the priming site used for sequencing.  Shaking B 

(N+16) is inserted in pUAST, a vector that does not contain a priming site for RNA 

polymerase.  This is a P-element vector suitable for the proposed in vivo studies in Drosophila 

melanogaster.  (C) The sequences of Shaking B lethal (top) and Shaking B (N+16) differ in the 

first half of the protein but are identical from the end of M2 through to the carboxyl terminus. 

A B 

C 
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 In order to create the desired construct, a deletion of the entire N-terminus of ShakB L 

(residues L2-T19) was created using forward and reverse primers that complemented about 20 

nucleotides on either side of the targeted deletion.  The primers create a loop of DNA (the 

targeted deletion) that is not included in the extension process during PCR. Following the 

successful deletion, a region coding the amino terminus of ShakB N+16 was inserted.  Forward 

and reverse insertion primers were designed, and each contained regions flanking the targeted 

insertion that were complementary to the ShakB L construct.  In addition, the primers included a 

69 nucleotide loop containing the sequence to be inserted. During PCR, the large insertion 

primer is extended creating a product that is 69 nucleotides longer than the template sequence.  

Insertion mutagenesis of a single residue in the same fashion of the larger insertion was used to 

correct an error in the initial insertion reaction. Figure 8 below shows a series of images 

illustrating the sequences of the chimeric constructs and their parent proteins.  
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Figure 8  

         Figure 8.  Illustrations of the various constructs used in this study.  (A) ShakB L, noted in 

orange. (B) ShakB N+16, noted in blue.  (C) Mutant construct “SBL-NTdel”, in which the N-

terminus of ShakB L is deleted.  The remainder of the protein is noted in orange, as it is a 

variation of ShakB L. (D)  Mutant construct “SBL+N16NT-I19”, in which the N-terminus of 

Shakb N+16 (blue region) was inserted in the place of that of ShakB L, but without Isoleucine 

19 (grey stripe).  (E) Mutant construct “SBL+N16NT”, in which the missing Isoleucine is 

restored, resulting in a chimeric protein which had the “body” of ShakB L (orange) and the N-

terminus of ShakB N+16 (blue). 

 

RNA Preparation 

     Prior to in vitro transcription, plasmid DNA was linearized with either XhoI or SacI. 

Linearization was verified by gel electrophoresis and a Geneclean kit (Q-Biogene Inc, Lachine, 

Quebec) was used to concentrate the DNA template. An agarose gel was run after each step to 

confirm successful linearization and concentration prior to assembling the in vitro transcription 

reaction and finally to confirm and quantify the transcribed RNA.  All samples were run 
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alongside a Zip Ruler 1 DNA ladder (Fermentas Inc., Glen Burnie, MD) as a control for 

construct size and sample concentration. One microliter of DNA was run per lane. RNA was 

prepared using a standard mMessage mMachine RNA kit (Applied Biosystems/Ambion, Austin, 

TX).  Sense RNA was synthesized using an SP6 promoter located upstream of the 5’ end of the 

gene.  RNA was purified with lithium chloride and quantified using gel electrophoresis and 

ethidium bromide staining through comparison to an RNA 250 control (Applied 

Biosystems/Ambion, Austin, TX). 

 

Oocyte Expression System. 

      The oocyte expression system was used to assay properties of the ShakingB mutants. The 

technique of recording intercellular currents from paired Xenopus oocytes was carried out as 

described by Skerrett et al. (2001).   Oocyte clusters were surgically extracted from Xenopus 

laevis according to an IACUC approved protocol.  Oocytes were cleaned and digested in Oocyte 

Ringers 2 (OR2; 82.5 mM NaCl, 2 mM KCl, 1 mM MgCl2, 5 mM HEPES, pH 7.4).  The oocyte 

clusters were treated with collagenase (Type 1A, Sigma-Aldrich Corp. St. Louis MO) to break 

down the connective tissue and allow for sorting. Only stage five or six oocytes were used for 

experimentation.  Once the oocytes were sorted and separated, the follicle layer surrounding the 

cells was manually stripped off with two pairs of fine-tipped forceps (Skerrett, et al., 2001).  

Oocytes were maintained in modified Barth’s (MB) solution (88 mM NaCl, 1 mM KCl, 0.41 

mM CaCl2, 0.82 mM MgSO4, 1 mM MgCl2, 0.33 mM Ca(NO3)2, 20 mM HEPES, pH 7.4) for 

injection, pairing and recording.   

 After the removal of the follicle layer, oocytes were injected with 0.5 ng (9 nl 

volume) of morpholino antisense oligonucleotide directed against Xenopus Cx38 (Gene Tools 
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LLC, Philomath, OR).  The oligonucleotide serves to halt the expression of naturally occurring 

Xenopus connexin 38. After the injection with morpholino, the oocytes were placed in an 

incubator for approximately12 hours at 17°C.  The following day, oocytes were injected with 

RNA encoding the proteins of interest. A group of negative-control oocytes was also maintained.  

RNA was diluted to 125 ng / µl and 40 nl injection volume was used for each oocyte, 

establishing an estimated 5 ng of RNA per oocyte.  In later experiments, low conductance 

measurements were required for accurate analysis of voltage-dependence and the amount of 

RNA injected was reduced by a half (2.5 ng / oocyte) or a quarter (1.25 ng / oocyte).  Wildtype 

ShakB L has previously been expressed in oocytes using the construct in Figure 7a, in the lab of 

Dr. Phelan (Phelan et al., 1998; Phelan et al., 2008) and in our lab (DePriest et al., 2011).  ShakB 

L expresses consistently and robustly inducing intercellular conductance in the 50 µS – 100 µS 

range after RNA injections of 5 ng per oocyte.  

To allow gap junctions to form between oocytes, the vitelline layer was manually removed and 

the oocytes were paired in shallow wells composed of agar and OR2 media. 

To assess junctional conductance, paired oocytes were clamped at -20 mV using two 

Geneclamp Amplifiers (Molecular Devices, Sunnyvale, CA). One cell was pulsed to +80 mV and 

-120 mV eliciting a 2 second transjunctional current (Ij),recorded as a clamping current in the 

partnered oocyte.  Data were acquired and analyzed using pClamp10 software (Molecular 

Devices, Sunnyvale, CA).  For a more detailed analysis of gating properties, a set of longer 

voltage steps was applied in 10 mV increments to a maximum transjunctional voltage (Vj) of 

±100 mV.  In both cases, currents were recorded and later measured using Clampfit software 

(Molecular Devices, Sunnyvale, CA) to establish conductance values both at the beginning and 

end of each voltage pulse.  Initial currents were measured within the first 100 ms of the voltage 
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pulse, while final currents were measured at the end of the 2 second voltage pulse.  In cases 

where accurate measurements of instantaneous current were hampered by membrane capacitance 

currents, exponential curves were carefully fit to the data and extrapolated to the time point 

corresponding to the start of the voltage pulse.  

     For studies of sensitivity to transmembrane voltage (Vm), paired oocytes were clamped at 

identical holding potentials ranging from -100 mV to +60 mV while a transjunctional voltage 

was elicited as described above.   Pairings between wildtype-injected oocytes and oocytes 

injected only with antisense morpholino (oligo/ShakB(L)) served as a negative control. A set of 

experiments was considered only if pairings between wildtype and antisense-injected oocytes 

failed to induce measurable intercellular currents.     
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Results 

Creating a Chimeric Innexin 

       After deletion mutagenesis was performed on ShakB L and sequence analysis confirmed the 

deletion was successful, the construct was termed “SBL-NTdel”.  The translated sequence of 

SBL-NTdel is shown in Figure 9A, aligned with the original ShakB L amino acid sequence.     

 The subsequent insertion mutagenesis reaction was successful but an error in primer design 

provided a new construct that incorporated all residues of the N-terminus of ShakB N + 16 with 

the exception of Ile19.  This construct was named “SBL+N16NT-I19” (Figure 9b).  In the final 

mutagenesis reaction, a short insertion primer was used to insert a codon corresponding to Ile19 

resulting in a construct where the entire ShakB L N-terminus was replaced by that of ShakB 

N+16.  This construct was named “SBL+N16NT” (Figure 9c). 
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C. 

 

 
 

 

Figure 9 

 
      Figure 9. Alignment of amino acid sequences relevant to the creation of a chimeric 

Shaking B lethal.  (A) Shaking B lethal and the mutant construct “SBL-NTdel”.  The upper 

sequence represents the first 100 amino acids of  SBL, and the lower sequence is the mutated 

version demonstrating deletion of the amino terminus.  Residues L2 through T19 of SBL were 

removed by deletion mutagenesis. (B) Alignment comparing amino acid sequences of Shaking 

B neural+16 to the construct “SBL+N16NT-I19”.  The naturally occurring SBN+16 is on the 

top, while the mutant is on the bottom.  The initial mutagenesis reaction failed to insert I19 of 

the N+16 N-terminus. Other mismatches in the alignment represent naturally occurring 

differences in the protein sequence of Shaking B Lethal (bottom) and Shaking B N+16 (top).  

(C) Amino acid sequence alignment comparing wildtype Shaking B Neural+16 with the 

mutant construct “SBL+N16NT”, in which the N-terminus of Shaking B lethal is replaced with 

the N-terminus of Shaking B Neural + 16. The wildtype N+16 sequence is on top and the 

N+16 N-terminus is comprised of residues M1 through I24. 

 

 

RNA Preparation 

       Figure 10 shows linearized DNA run alongside a Zip Ruler 1 DNA ladder (Fermentas Inc., 

Glen Burnie, MD) as a control for both construct size and sample concentration.  All samples 

were successfully linearized.  Agarose gels also confirmed the success of in vitro transcription, 
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as seen in the gel sample in Figure 11, where an RNA product is run alongside an RNA sample 

of known concentration (RNA control 250, Applied Biosystems/Ambion, Austin, TX). 

 
Figure 10 

      Figure 10.  Agarose gel confirming the successful linearization of the plasmid DNA in 

lanes 2 and 3, which contain the mutant construct “SBL+N16NT”. Lane 1 contains the DNA 

ladder ZipRuler 2 (Fermentas Inc Glen Burnie, MD).  The linearized DNA is about 4000 base 

pairs in length and is present at a concentration of about 50 ng per microliter.   

 

 

Figure 11 

     Figure 11.   Agarose gel confirming the presence of RNA after in vitro transcription.  Lane 

1 shows the RNA 250 control while lanes 2 and 4 show RNA samples for Shaking B lethal.  

Since the gel is non-denaturing the RNA appears as a smeared band due to secondary structure.  

The estimated concentration based on comparison to the 250 ng / µl standard in Lane 1 is 300 

ng / µl for the sample in Lane 2 and 400 ng / µl for the sample in Lane 4.  RNA was later 

diluted to a concentration of about 125 ng / µl prior to injection.  
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Xenopus Oocyte Expression and Electrophysiology  

 

Deletion of the Amino Terminus 

     In order to establish the necessity of an amino terminus for function, the SBL-NTdel was 

tested in oocytes.  While ShakB L expressed robustly, inducing an average conductance above 

100 µS, the mutant failed to induce intercellular conductance when paired with itself.  As shown 

in Figure 12a, the mutant-induced conductance is indistinguishable from non-injected controls, 

while wildtype ShakB L induced an average conductance of 140 µS (n=3, SE = 32 µS).  The 

expression of wildtype ShakB L was typically high and exhibited a symmetrical response to 

voltage as expected (Figure 13a).  Wildtype ShakB L paired with uninjected controls had a 

conductance of 0 µS (n=4, SE = 0 µS).  Note that since all oocytes were first injected with a 

morpholino antisense oligonucleotide to reduce expression of endogenous connexins, the 

uninjected controls are referred to henceforth as “oligo controls”.  Pairing of oocytes expressing 

the ShakB L, NT deletion (SBL-NTdel) were non-functional, having an average conductance of 

0 µS (n=3, SE = 0 µS).  A sample trace showing the “flat line” observed in the absence of 

intercellular coupling is shown in Figure 13b).  

  



26 

 

 

Figure 12 

     Figure 12.  (A) Average conductances for the experimental series involving the mutant 

“SBL-NTdel” (deletion of the Shaking B (lethal) N-terminus).   The  oligo controls had an 

average conductance of 0 µS (n=4, SE= 0 µS).  The wildtype-wildtype pairings had an average 

conductance of 140 µS (n=3, SE=32.78 µS).  Mutant-mutant parings had an average 

conductance of 0 µS (n=3, SE = 0 µS).  (B) Graphic depicting the two constructs used in this 

experimental series; Wild type ShakB L (wt) and the mutant “SBL-NTdel” (mut). 
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A.  

 
 

B. 

 

 
 

Figure 13 

 
     Figure 13. (A) A set of intercellular currents recorded from oocytes expressing wt Shaking 

B (lethal).  Note the symmetrical response to voltage, which causes channels to close slowly 

over time.  The currents display time- and voltage- dependent inactivation.  (B)  A set of 

currents recorded from oocytes expressing Shaking B lethal Nt-Del (N-terminal deletion).  The 

mutant consistently failed to induce intercellular currents in oocytes. 
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Insertion of ShakB N+16 Amino Terminus (missing I19) 

     Electrophysiological testing of the construct “SBL+N16NT-I19” showed that the mutant was 

functional (Figure 14). In the experiment, oligo controls had an average conductance of 0 µS 

(n=4, SE = 0 µS), wildtype ShakB L pairings had an average conductance of 48 µS (n=4, SE 

=12.5 µS), pairings between wildtype ShakB L and SBL + N16NT-I19 had an average 

conductance of 6.02 µS (n=5, SE= 2.95 µS) while homotypic pairings of the mutant induced 

conductance of 26.5 µS (n=4, SE=15.39 µS).  
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Figure 14 

     Figure 14.  (A) Average conducances in the experimental series using the mutant 

SBL+N16NT-I19 (replacement of the SBL N-terminus with a variant of the N-terminus of 

SBL N+16 which is missing I19).  The oligo control had an average conductance of 0 µS (n=4, 

SE = 0 µS).  The average conductance of the wildtype-wildtype pairings was 48 µS (n=4, 

SE=12.5 µS).  The Wildtype-mutant pairing had an average conductance of 6.02 µS (n=5, 

SE=2.95 µS).  The average conductance for the mutant-mutant pairings was 26.5 µS (n=4, 

SE=15.39 µS). (B) Graphic depicting the two constructs used in this experimental series; Wild 

type ShakB L (wt) and the mutant “SBL+N16NT-I19” (mut). 
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     Interestingly, pairings between wildtype ShakB L and the mutant exhibited both asymmetrical 

gating and appeared to display instantaneous rectification. This is apparent in the current traces 

displayed in Figures 15 and 16.  In heterotypic ShakB L/SBL + N16NT-I19 pairings, the 

channels gate strongly when the wildtype-expressing oocyte is relatively negative.  Rather than 

inactivating in response to relative positive voltages, the channels activate slightly.  In addition, 

the current level (and therefore junctional conductance) appears to be larger upon depolarization 

when measured at the start of the voltage pulse suggestive of “instantaneous rectification”.   

 

Figure 15 

     Figure 15.  A set of current traces recorded from oocytes expressing heterotypic gap 

junction proteins Shaking B Lethal and Shaking BN16NT-I19.  This recording was taken 

relative to the wildtype-expressing oocyte, meaning that outward currents represents the flow 

of positively charged ions or molecules out of the wildtype-expressing cell, or into the mutant-

expressing oocyte.  Note the asymmetric nature of the voltage-gating response, and also the 

apparent difference in instantaneous current flow at the start of the trace.   
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  Figure 16 

     Figure 16.  A set of current traces recorded from oocytes expressing heterotypic gap 

junction proteins Shaking B Lethal and Shaking BN16NT-I19.  This recording was taken from 

the mutant- expressing oocyte, meaning that outward currents represent the flow of positively 

charged ions or molecules, out of the mutant-expressing cell or into the wildtype- expressing 

oocyte.  Note the asymmetric nature of the voltage-gating response, and also the apparent 

difference in instantaneous current flow at the start of the trace.   

 

     To further investigate the properties of SBL + N16NT-I19, the oocyte holding potential was 

varied.  In other experiments, oocytes were continuously clamped at -20 mV.  In this experiment, 

currents were measured at four different holding potentials, -100 mV, -60 mV, -20 mV, and 20 

mV.  Variations in holding voltage did not strongly effect gating (see Figures 17 and 18) 

although it is not possible to rule out some minor influence of holding voltage.   Physiologically 

such regulation could occur as the resting membrane potential of communicating cells was 

altered.    
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Figure 17 

     Figure 17.  The effect of holding voltage (Vm) on conductance.  Instantaneous 

conductance and steady state (final) conductance are plotted as a function of holding voltage 

for oocytes expressing Shaking B lethal / SBL+N16NT-I19.  Currents were measured relative 

to the wildtype- expressing oocyte and recordings were taken from the same pair of oocytes at 

holding voltages of -100 mV, -60 mV, -20 mV, and 20 mV.  Instantaneous conductance was 

calculated from the current at the highest value, immediately after the capacitance spike (see A 

on the inset sample trace). Steady state (final) conductance was calculated from the current at 

at the highest value immediately before the end of the pulse (see B on the inset sample trace).   

 



33 

 

 

 

Figure 18 

     Figure 18.  The effect of holding voltage (Vm) on conductance. Instantaneous conductance 

and steady state (final) conductance are plotted as a function of holding voltage for oocytes 

expressing Shaking B lethal / SBL+N16NT-I19.  Currents were measured relative to the 

mutant- expressing oocyte and recordings were taken from the same pair of oocytes at holding 

voltages of -100 mV, -60 mV, -20 mV, and 20 mV.  Instantaneous conductance was calculated 

from the current at the highest value, immediately after the capacitance spike (see A on the 

inset sample trace). Steady state (final) conductance was calculated from the current at the 

highest value immediately before the end of the pulse (see B on the inset sample trace).   

 

     Figure 19 below summarizes the important changes induced in the chimeric innexin SBL 

N+16NT-I19 and compares these results to previous studies of Shaking B proteins.  A side by 

side comparison of the traces obtained in this study and the traces obtained by Phelan et al 

(2008) confirm that the rectification observed in this study is similar to that observed in previous 
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studies when ShakB L is paired with ShakB N+16.   Consistent with the observation of  wildtype 

proteins in the studies by Phelan et al (2008), homotypic mutant/mutant pairings shows 

symmetric gating.  Interestingly the SBL N+16NT-I19 shows similar gating to  ShakB L in 

homotypic pairing, but when paired heterotypically with wild type ShakB L acts like ShakB 

N+16.   

  



 

     Figure 19.  Comparisons of the junctional currents obtained by Phelan 

and in this study (B,D,F) for the mutant SBL+N16NT

construct listed above the trace (Construct 1 / Construct 2).  

are noted to the right of each trace. Trace A is the naturally ocurring rectifying junction 

composed of ShakB N+16 and Shaking B lethal tested by Phelan 

represents currents of heterotypic pairings between SBL+N16NT

study.  This junction rectifies in the same manner as the naturally ocurring rectifier.  Trace C 

represents homotypic Shaking B lethal/Shaking B

(2008).  These respond symmetrically to a

currents of Shaking B lethal/Shaking B lethal in this study and these show the same response 

to applied voltage as when studied by Phelan 

ShakB N+16 junctions (Phelan

SBL+N16NT-I19. Note that when

wildtype Shaking B lethal, but when paired with wildtype Shaking B lethal, the mutant 

construct behaves like ShakB N+16.  

Biol. 18,  Phelan, P.,  Goulding, L.A.,  Tam, J.L.Y.,  Allen, M.J.,  Dawber, R.J.,  Davies, J.A., 

and Bacon J.P.,  Molecular Mechanism of Rectification in the 

Pages No. 1955-1960. © (2007), With permission from Elsevier. 

Figure 19 

.  Comparisons of the junctional currents obtained by Phelan et al (2008; A,C,E) 

and in this study (B,D,F) for the mutant SBL+N16NT-I19.  Data is recorded relative to the

ace (Construct 1 / Construct 2).  Steady-state conductance values 

are noted to the right of each trace. Trace A is the naturally ocurring rectifying junction 

composed of ShakB N+16 and Shaking B lethal tested by Phelan et al (2008) .  Trace B 

represents currents of heterotypic pairings between SBL+N16NT-I19/  Shaking B lethal in this 

study.  This junction rectifies in the same manner as the naturally ocurring rectifier.  Trace C 

represents homotypic Shaking B lethal/Shaking B lethal junctions tested by Phelan et al

(2008).  These respond symmetrically to applied voltage.  Trace D represents homotypic 

currents of Shaking B lethal/Shaking B lethal in this study and these show the same response 

to applied voltage as when studied by Phelan et al (2008).  Trace E represents homotypic 

ShakB N+16 junctions (Phelan et al., (2008).  Trace F  represents homotypic pairings between 

I19. Note that when SBL+N16NT-I19is paired with itself it behaves like 

wildtype Shaking B lethal, but when paired with wildtype Shaking B lethal, the mutant 

construct behaves like ShakB N+16.  Figures by Phelan et al., (2008) are reprinted from

oulding, L.A.,  Tam, J.L.Y.,  Allen, M.J.,  Dawber, R.J.,  Davies, J.A., 

and Bacon J.P.,  Molecular Mechanism of Rectification in the Drosophila Giant Fiber System. 

1960. © (2007), With permission from Elsevier.  

35 

 

(2008; A,C,E) 

Data is recorded relative to the first 

ductance values 

are noted to the right of each trace. Trace A is the naturally ocurring rectifying junction 

(2008) .  Trace B 

19/  Shaking B lethal in this 

study.  This junction rectifies in the same manner as the naturally ocurring rectifier.  Trace C 

et al 

pplied voltage.  Trace D represents homotypic 

currents of Shaking B lethal/Shaking B lethal in this study and these show the same response 

(2008).  Trace E represents homotypic 

(2008).  Trace F  represents homotypic pairings between 

I19is paired with itself it behaves like 

wildtype Shaking B lethal, but when paired with wildtype Shaking B lethal, the mutant 

from Curr. 

oulding, L.A.,  Tam, J.L.Y.,  Allen, M.J.,  Dawber, R.J.,  Davies, J.A., 

Giant Fiber System. 



36 

 

Conmplete chimeric Shaking B lethal with the amino terminusof Shaking B N+16 

     In order to confirm that the interesting properties of SBL N+16NT-I19 could be attributed to 

the addition of the amino terminus of ShakB N+16 rather than the missing Ile19, a final construct 

was created using site-directed mutagenesis, reinserting the missing I19.  Measurements of 

junctional conductance confirmed that the new construct SBL+N16NT produced functional gap 

junction channels and this information is summarized in a bar graph in Figure 20.  The oligo 

control had an average conductance of 0 µS (n=6, SE = 0 µS). Wildtype-wildtype pairing in this 

series had an average conductance of 80.3 µS (n=6, SE=5.7 µS).  The wildtype-mutant pairing 

had an average conductance of 78.14 µS (n=7, SE=12.4 µS).  
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Figure 20 

     Figure 20.  (A) Average conductances from the first experimental series involving the 

mutant construct “SBL+N16NT “ (the replacement of the N-terminal of Shaking B lethal with 

the whole  N-terminal of Shaking B N+16). The conductance of the oligo controls was 0 µS 

(n=6, SE = 0 µS).  Wildtype-wildtype pairs had an average conductance of 80.3 µS (n=6, 

SE=5.7 µS).  Wildtype-mutant pairs had an average conductance of 78.14 µS (n=7, SE=12.4 

µS). (B) Graphic depicting the two constructs used in this experimental series; Wild type 

ShakB L (wt) and the mutant “SBL+N16NT” (mut).  

 

     To better assess voltage sensitivity of the chimera SBL+N16NT, another round of 

experiments was performed with reduced amounts of mutant RNA injected into the oocytes.  As 

junctional conductance increases the relative contribution of series and access resistance 
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increases, resulting in reduced voltage drop across the junction (Wilders and Jonsgma, 1992).  

As demonstrated in the bar graph in Figure 21, reducing the RNA by a half or a quarter reduced 

coupling levels substantially.  The oligo controls had an average conductance of 0 µS (n=4, SE = 

0 µS).  The homotypic wildtype ShakB L pairs injected with the standard 5 ng of RNA per 

oocyte had an average conductance of 82.2 µS (n=5, SE=16 µS).  The pairs in which these 

wildtype-injected oocytes were paired with oocytes injected with half the amount of mutant 

RNA (1/2 conc, about 2.5 ng/oocyte) had an average conductance of 61 µS (n=8, SE=14 µS).  

The pairs in which the wildtype-injected oocytes were paired with oocytes injected with one 

quarter of the amount of RNA (1/4 conc., about 1.25 ng/oocyte) had an average conductance of 

48 µS (n=8, SE=16 µS).  Ideally, voltage-dependence should be studied at conductance below 10 

µS.  Hence, oocyte pairs with conductance in the lower range will be selected for more detailed 

analyses of gating, specifically construction of a Gj (junctional conductance) versus Vj 

(transjunctional voltage) plot.  Such plots are often fit with a Boltzman equation to determine 

parameters of V1/2 and Gmin, standard indicators of the voltage at which half-maximal 

inactivation occurs and the minimal conductance induced by voltage, respectively.    
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Figure 21 

     Figure 21. (A) Average conductances from the second experimental series involving the 

mutant construct SBL+N16NT.  RNA encoding wildtype Shaking B lethal was injected at the 

standard amount (1.25 ng / oocyte), while the amount of RNA for the mutant was reduced by a 

half (half conc, about 0.6 ng/oocyte) and a quarter (1/4 conc, about 0.3 ng/oocyte. The average 

conductance of oligo control was 0 µS (n=4, SE = 0 µS).  Homotypic wildtype/wild type pairs 

had an average conductance of 82 µS (n=5, SE=16 µS).  The average for wildtype/mutant (half 

conc.) was 61 µS (n=8, SEr=14 µS) while the average conductance for wildtype/mutant (1/4 

conc.) was 48 µS (n=8, SE=16 µS). (B) Graphic depicting the two constructs used in this 

experimental series; Wild type ShakB L (wt) and the mutant “SBL+N16NT” (mut). 
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     Current traces recorded from the chimera SBL+N16NT are shown in Figures 22, 23 and 24.   

Regardless of the RNA concentration, the mutant induced currents that gated asymmetrically 

when paired with wildtype ShakB L (Figures 22 and 23) but gated symmetrically, with 

characteristics similar to those of wildtype ShakB L, when paired homotypically (Figure 24).   

Side by side comparisons of the traces obtained in this study and the traces obtained by Phelan et 

al (2008) confirm that the chimera has gating properties similar to those of ShakB N+16 when 

paired heterotypically.  In homotypic pairings, the mutant behaves similarly to wildtype ShakB 

L.  It is also of note that the behavior of SBL+N16NT-I19 appears very similar to SBL+N16NT, 

and deletion of the isoleucine did not alter the function of the channel.   

 
 

 

Figure 22 

 
     Figure 22.  Example set of current traces recorded from heterotypic Shaking B 

lethal/SBL+N16NT pairs.  Currents are shown relative to the mutant-expressing oocyte. The 

traces shows the asymmetrical nature of the voltage response, and apparent instantaneous 

rectification.   
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Figure 23 
 

     Figure 23. Example set of current traces recorded from heterotypic Shaking B 

lethal/SBL+N16NT pairs.  Currents are shown relative to the wildtype-expressing oocyte. The 

traces shows the asymmetrical nature of the voltage response, and appear to demonstrate 

instantaneous rectification  
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Figure 24 

     Figure 24.  Example set of current traces recorded from homotypic 

SBL+N16NT/SBL+N16NT pairs.  Currents are symmetric and resemble those of 

wildtype ShakingB lethal. 
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Discussion 

     The chimera SBL+N16NT is a protein composed of ShakB L, with the N-terminus of ShakB 

N+16.  The chimera was used to investigate the role of the N- terminus in electrical rectification 

at heterotypic ShakB L/ShakB N+16 junctions.  Phelan et al (2008) recently showed that in the 

Giant Fiber System of Drosophila, ShakB(N+16) is expressed presynaptically in GFI’s, while 

ShakB(L) is expressed in postsynaptic TTMn’s.  The two variants of ShakB, assemble to 

produce rectifying heterotypic gap junctions, the properties of which were investigated after 

expression in Xenopus oocytes (Phelan et al., 2008).  The chimeric construct SBL+N16NT was 

expressed in Xenopus oocytes to study interactions with wildtype ShakB L.  The chimera 

expressed robustly and readily formed heterotypic junctions with ShakB L.  The properties of the 

heterotypic junctions closely mimic the rectifying synapses observed by Phelan et al. (2008).  

The data supports the hypothesis that the N-terminus imparts properties that underlie rectification 

at heterotypic junctions.  

 

Coupling Levels 

     The average conductance values in the experiments provide information about the expression 

and function of mutant constructs.  Each experimental series was performed using a single batch 

of oocytes obtained from the same frog in the same surgery.  Despite efforts to minimize 

variability in this way, a wide range of conductance values were observed within each group.  

This variability can be attributed to variable health of oocytes, pre- and post-injection, or 

inconsistency in injection of volume of RNA (Skerrett et al., 2001).  In all experiments 

presented, most oocytes appeared healthy after injection and pairing and since a quantitative 
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analysis of conductance levels was not necessary, the large standard errors do not influence 

interpretation of the results. 

 

Analysis of the Mutant SBL-NTdel 

     The analysis of SBL-NTdel demonstrated for the first time that removal of the N-terminus of 

an innexin results in loss of function.  The average conductance for the mutant-mutant pairs was 

0 µS and an example trace shown in Figure 13 demonstrates only background noise in the paired 

oocytes.  Although it is clear that the mutant is non-functional it is not clear whether loss of 

function results from problems with translation, insertion, trafficking to the membrane, docking 

or gating.   

     The deletion of the N-terminus of ShakB (L) removed 20 amino acids from the primary 

protein structure.  It is possible that some of these residues play a role in protein folding and their 

loss prevents the rest of the protein from assuming the proper structure and function.  

Localization failure could occur for multiple reasons.  If the protein is misfolded, it may not 

traffic properly and/or may fail to be inserted into the membrane.  It is also possible that the 

protein does manage to fold properly, however the N-terminus plays a role in trafficking.  This is 

particularly likely in light of the 2008 study by Kyle et al, which demonstrated that removal of a 

significant portion of the N-terminus of connexin 37 caused failure to localize.   The final 

possibility is that the N-terminal domain is crucial for gating in the Shaking B innexins, and that 

removal of the domain caused a loss of gating capability.  This has been observed for connexins, 

where removal of a large portion of the N-terminus eliminates function, and at the same time 

decreases the mass found within the pore in comparison to unaltered proteins (Oshima et al., 

2008).  It has been proposed that in connexins, the N-terminus folds up into the pore acting as a 
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plug to close the channel (Maeda et al., 2009) or that the N-terminus holds the pore open under 

certain circumstances (Oshima et al., 2008). 

     The exact reason for this loss of function can be determined in future experiments.  A GFP 

tag on the C-terminus of the mutant would allow visualization of the protein and determination 

of the degree of localization to the membrane.  GFP-tagged membrane proteins have been 

studied in oocytes using confocal microscopy, which allows visualization despite the yolk 

reserves within the cell (Limon et al., 2007).   If the proteins do localize to the membrane 

properly but fail to form gap junctions, the presence or absence of plaques can be studied using 

electron or atomic force microscopy as demonstrated by Yu et al (2007).   If the channels are 

found to traffic, localize and form plaques successfully then the deletion of the N-terminus is 

likely to result in loss of function due to effects on gating. 

 

Analysis of the Mutants SBL+N16NT-I19 and  SBL+N16NT 

     The mutant construct SBL+N16NT-I19 represented a first attempt to replace the N-terminus 

of ShakB Lethal with that of N+16.  Unfortunately, the codon for isoleucine 19 was missing in 

the mutagenesic primer.  Despite the mistake, the mutant was tested and was found to be 

functional.  When it was paired with wildtype ShakB L, the junction acted as a rectifier 

suggesting that the N-terminus did carry properties essential for rectification.   

     As shown in Figure 19, several interesting observations are highlighted through a side by side 

comparison of the traces obtained by Phelan et al (2008) and the traces obtained for 

SBL+N16NT-I19 in this experiment.  First, the rectifying traces show very similar patterns when 

compared to each other.  The fact that the data obtained in this study matches very closely the 

gating pattern of previously characterized rectifying junction suggests that the N-terminal 
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domain plays a significant role in the properties underlyng rectification. It is very interesting to 

note that homotypic pairings of the SBL+N16NT-I19 mutant induce gating similar to that of 

wildtype ShakB L.  This is in stark contrast to the behavior in heterotypic pairings where the 

mutant behaves similar to ShakB N+16.  It appears that a significant part the mechanism that 

drives rectification is imparted by the N-terminus, but the N-terminus plays little role in voltage-

dependent gating of homotypic junctions.  This provides evidence that rectification is unrelated 

to the gating mechanisms underlying Vj-dependent channel inactivation.   

     Analyses of the functional elements and structural motifs of the N-terminus suggest that this 

missing isoleucine may be irrelevant.  Firstly, one of the crucial areas of the N-terminus is 

believed to be the charged residue in site 2 of the n-terminal chain (Oh, et al. 2000; Maeda et al, 

2009).  This is unchanged from the normal N-terminal sequence for ShakB N+16, and is 

therefore unlikely to alter the expected gating pattern that can be expected in the whole N-

terminal replacement tests. Secondly, predictions of the structure of the protein according to the 

model by Holley and Karplus (1989) suggest that the missing Isoleucine would not directly 

interfere in function.  The model predicts the presence of two helices, one large helix in the first 

segment of the N-terminus, and a smaller four residue helix near the N-terminal/M1 boundary, 

much like the structure of the connexin 37 N-terminus (Kyle et al., 2009).  The missing 

isoleucine would be found in the short alpha helix that is likely to be the region that acts as a 

hinge in the physical movement of the larger helix of the N-terminal in and out of the pore, 

allowing for interactions with the pore lining helices (Kyle et al., 2009; Maeda et al, 2009).  The 

model predicts that the loss of Isoleucine 19 will not impact the integrity of the short helix, and 

since the area that would be expected to interact with the pore lining helices is intact, there 

should be no significant variation between the traces observed for this construct and the whole 
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N-terminal replacement.  This suggests that the rectification observed in this construct is 

genuine. 

       The construct SBL+N16NT represents a chimera of ShakB L with the N-terminus of ShakB 

N+16.  The channels expressed robustly and displayed rectification in heterotypic pairing with 

wildtype ShakB L.  The rectification is again similar to that observed by Phelan et al (2008) and 

this is apparent in the side-by-side comparison in Figure 25.  The results are also similar to those 

obtained for the construct SBL+N16NT-I19.   A set of traces is compiled in Figure 26 where the 

mutant constructs SBL+N16NT-I19 and SBL+N16NT are compared to one another, and also to 

the recordings of Phelan et al. (2008).  The constructs display a similar pattern of rectification in 

heterotypic junctions and display similar gating responses in homotypic junctions. The similarity 

confirms that the missing I19 in SBL+N16NT-I19 is not crucial for gating or rectification.  The 

observations further support the hypothesis that the N-terminal domain plays a key role in 

rectification in innexin channels.   
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Figure 25 



49 

 

     Figure 25.  Side by side comparisons of the traces obtained by Phelan et al (2008; 

A,C,E,G) and in this study for SBL+N16NT (B,D,F,H)  The first construct listed above the 

trace (Construct 1 / Construct 2) is represented on the bottom half of the trace, and the second 

half is represented on the top half of the trace. Steady state conductance values are noted to the 

right of each trace. Trace A represents the rectifying junction composed of Shaking B lethal 

and ShakB N+16 demonstrated by Phelan et al (2008).  Trace B represents coupling of 

Shaking B lethal and SBL+N16NT in this study.  This junction rectifies in the same manner as 

that observed by Phelan et al. (2008).  Trace C is the rectifying junction composed of ShakB 

N+16 and ShakB L tested by Phelan et al (2008), and is the same junction type as shown in 

trace A, opposite polarity.  Trace D represents coupleing between SBL+N16NT and Shaking B 

lethal, and is the same junction as seen in trace B, opposite polarity.  This junction rectifies in 

the same manner as the naturally ocurring rectifier.  Trace E represents homotypic Shaking B 

lethal/ Shaking B lethal junctions tested by Phelan et al (2008).  The response to voltage is 

symmetric.  Trace F represents the Shaking B lethal/ Shaking B lethal junctions tested in this 

study.  The results match those obtained by Phelan et al (2008).  Trace G represents homotypic 

junctions formed by ShakB N+16/ShakB N+16 (Phelan et al.,2008).  Trace H represents 

currents recorded from the homotypic junctions composed of the chimeric protein 

SBL+N16NT/ SBL+N16NT.  Note that when paired with itself, the mutant behaves like 

wildtype Shaking B lethal, but when paired with wildtype Shaking B lethal, the mutant 

behaves like ShakB N+16.  Figures from Phelan et al., (2008) are reprinted from Curr. Biol. 

18,  Phelan, P.,  Goulding, L.A.,  Tam, J.L.Y.,  Allen, M.J.,  Dawber, R.J.,  Davies, J.A., and 

Bacon J.P.,  Molecular Mechanism of Rectification in the Drosophila Giant Fiber System. 

Pages No. 1955-1960. © (2007), With permission from Elsevier.  
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Figure 26 

     Figure 26.   Side by side comparisons of the mutant traces obtained in this study (B,C,G,H) 

and the traces obtained by Phelan et al., in 2008 (A,D,E,F).  The first construct listed above the 

trace (Construct 1 / Construct 2) is represented on the bottom half of the trace, and the second 

half is represented on the top half of the trace. Steady state conductance values are noted to the 

right of each trace.   Trace A represents the rectifying junction composed of ShakB N+16 and 

ShakB L tested by Phelan et al (2008) .  Trace B represents the SBL+N16NT-I19 paired with 

Shaking B lethal.  Trace C represents coupling of the mutant SBL+N16NT with Shaking B 

lethal.  Trace D represents the homotypic ShakB L/ShakB L junction tested by Phelan et al 

(2008).  Trace E represents the Shaking B lethal/ Shaking B lethal junction tested in this study.  

Trace F represents the homotypic junction formed by ShakB N+16 paired with itself, tested by 

Phelan et al (2008). Trace G  represents the mutant SBL+N16NT-I19 paired with itself. Trace 

H  represents the mutant SBL+N16NT paired with itself. Figures from Phelan et al., (2008) are 

reprinted from Curr. Biol. 18,  Phelan, P.,  Goulding, L.A.,  Tam, J.L.Y.,  Allen, M.J.,  

Dawber, R.J.,  Davies, J.A., and Bacon J.P.,  Molecular Mechanism of Rectification in the 

Drosophila Giant Fiber System. Pages No. 1955-1960. © (2007), With permission from 

Elsevier.  
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A Note Regarding Side-by-Side Comparison of Current Traces 

     In several figures, current data is presented alongside current traces published in Phelan et al. 

2008.  These figures allow rapid visual comparison of the voltage-dependent gating 

characteristics of gap junction channels formed between paired oocytes. However, the 

experimental protocol of Phelan et al., 2008 differed slightly from that used here.  Phelan et al. 

(2008) used an eight step voltage pulse protocol compared to the ten-pulse protocol used in this 

study.  A set of current traces recorded in our lab will therefore include four traces more than 

those of Phelan et al. (2008), representing currents induced by junctional voltages of ±90 mV 

and ±100 mV.  In addition, the recordings of Phelan et al. (2008) were taken from oocyte pairs 

with lower conductance than pairs selected in this study.  The conductance values are clearly 

marked next to each set of traces. Voltage-sensitivity is enhanced at lower conductance because 

a greater percentage of the voltage drop occurs across the junction (Wilders and Jongsma, 1982), 

we optimized voltage control across the junction.by using electrodes containing silver chloride 

pellets rather than silver wires, and also by maintaining low resistance electrode tips (0.2 – 0.4 

MΩ).  Hence, the differences are very slight as apparent in the comparison of wildtype ShakB L 

in the two studies.    

 

Rectification of Electrical Synapses and Voltage Gating 

     The biophysical nature of rectification in electrical synapses has been debated for decades 

(Jaslove and Brink, 1984, Goodenough and Paul, 2011).  One possibility is that a rapid voltage-

dependent gating mechanism favors channel opening when the presynaptic cell is depolarized.  

Another possibility is that asymmetric pairings create a pore that passes ions more easily in one 
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direction than another, an instantaneous rectifier.  In this study the chimeric innexin, ShakBL 

N+16NT, formed a rectifying junction when paired with wildtype ShakBL.  The properties of the 

junction were almost identical to those of ShakBL/ShakBN+16 heterotypic junctions suggesting 

the amino terminus is the domain responsible for creating rectification in heterotypic situations. 

 When paired with itself however, the chimera behaved like ShakBL.  The homotypic 

junctions gated symmetrically, inactivating with a voltage-sensitivity and time-course similar to 

that of ShakBL.  This suggests that gating due to transjunctional voltage (Vj) involves domains 

other than the amino terminus.  Hence rectification and Vj-dependent gating appear to be 

independent processes in ShakB.  This does not rule out the possibility that rectification is 

dependent on voltage. 

 

Future Work 

     The results observed in this study present a number of new questions that can be addressed.   

One of the first is the question of how the N-terminal replacement mutants would behave in a 

physiological system.  It is now clear that these mutants are functional, and mimic the 

rectification effect, but how would the replacement of wildtype ShakB L in a fruit fly affect the 

escape response? This could further elucidate the role of the chemical synapses that co-occur 

with the rectifying synapses (Allen et al., 2006).  

     The physiological significance of gap junction channel gating by factors such as voltage, pH 

and calcium are not well established.  Since these mutations result in channels with altered 

properties, they could serve as a tool to better understand the significance of gating.  In the 

future, such mutants will be used to create DNA construct amenable to insertion into the genome 

of Drosophila melanogaster.  According to the protocol by Allen & Godenschwege (2010), the 
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mutant flies will then be subjected to electrophysiological testing in vivo.  The flies will be 

anesthetized using carbon dioxide, or ice.  The anesthetized fly will then be immobilized by 

pushing its legs, proboscis, and wings into dental wax. Five electrodes will be inserted into the 

fly. The grounding electrode will be inserted into the posterior end of the abdomen, while a 

stimulating electrode is inserted into each half of the brain by going through the eye. To ensure 

that the electrodes are in the proper brain region, short pulses will given in order to cause 

movement of the wings. A recording electrode containing 3M KCl will then be inserted into the 

DLM of the fly, and a short pulse will be applied to the brain again to ensure proper insertion.  

Finally, this process of insertion into the muscle tissue will be repeated in the TTM on the side 

opposite the DLM insertion.  A series of ten stimuli will then be induced with five seconds of 

resting time between stimuli.  The response latency for each stimulus will be recorded, and the 

average taken.  Then, a series of ten rapid fire stimuli will be induced with two seconds between 

the volleys of stimuli.  This will be performed at frequencies of 100, 200, and 300 Hz.  The 

number of responses will be compared against the number of stimuli given.   The results of the 

mutants will be compared against the results obtained from wild type flies. 

     The escape response of the fruit fly is complex, involving multiple pathways.  Motor neurons 

receive input from sources other than the rectifying synapses that are the focus of this study, 

hence it is of value to observe to what extent a mutation in the rectifiers will affect the speed at 

which the escape response occurs in the live organism. The role of the synapse between the 

TTMns and PSIs is not expected to play a role in this instance, because both the TTMns and PSIs 

most likely receive the same signal from the GFs, considering that each of these fibers are 

responsible for the actions of a separate muscle in the same reflexive response. The information 

gathered from in vivo experimentation can further elucidate the role of the rectifying electrical 
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synapse in the mixed synaptic region found at the Giant Fiber fork.   The construction of the 

stimulation apparatus has been successful (Figure 28), and this work will soon be undertaken. 

 

 

Figure 27 

     Figure 27.  Photograph of the stimulation aparatus for use in electrophysiological testing of 

Drosophila  melanogaster.  The aparatus consists of several parts.  A is the Stimulator.  B is an 

oscilloscope for monitoring stimulus output.  C is the stimulus isolation unit.  D points to the 

wires into which the stimulus electrodes will be clipped. 

 

     In conjunction with the proposed in vivo study, further work can be performed on the 

junctions in vitro.  Single channel recordings can provide a much clearer answer as to the way 
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the junctions rectify.  A single channel recording would take the junctional conductance through 

one complete channel, and not the entire plaque.  Observing the activity of one channel as 

opposed to hundreds can clarify exactly how sensitive these gap junctions are to voltage, and 

resolve the question of whether the rectification is indeed “instantaneous” in nature or if it is 

voltage dependent. Our lab is currently organizing a collaboration with others in the field who 

are well versed in this technique.  

     In addition to testing the mutant constructs in flies and performing single channel recording of 

the existing mutants, it would also be useful to test the mutants created in this study against 

wildtype ShakB N+16 to see what type of junction forms when the N termini are the same and 

the body of the protein differs.   Also, switching the N-terminus of wildtype Shak B N+16 for 

that of Lethal, and testing those constructs against wildtype ShakB N+16 and against both 

wildtype ShakB L and the mutant constructs made in this study would be useful in further 

analyzing the role of the N-terminus in rectification.  Testing mutations in both of the proteins 

involved in the rectification effect in the fruit fly GFS would give a richer understanding of the 

physiological role of the system, and would provide even more data to uncover the mechanism of 

rectification. This was the original goal of this study, however, unforeseen difficulties and delays 

led to the abandonment of Shak B N+16 mutagenesis. 

     Mutations can also be made in other domains of the ShakB proteins to discern what other 

parts may play a role in rectification.  In connexins, it has been demonstrated that residues in the 

E1 domain involved in docking have an effect on rectification (Rubin et al., 1992a).  

Additionally, the M3 domain has also been shown to have an effect (Rubin et al., 1992b).  The 

Shaking B proteins L and N+16 only differ up until midway through M2, after which point they 

share an identical sequence, eliminating the idea of M3 playing a role in this particular junction. 
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While M3 is likely not a factor, the E1 domains do differ from each other and it may be possible 

that part of the mechanism involves the binding of the different E1 domains.  This study did not 

address that idea however, since all mutant were made from ShakB L in which the only 

alterations were made in the N-terminus.  

     In addition to the E1 domain, the gating polarity of the proteins may play a role in 

rectification in innexins.    Oh, et al., (1999 & 2000) demonstrated the effects of switching the 

gating polarity of this region of a connexin on rectification and channel polarity.  Could 

switching the polarity of this region in an innexin have the same effect, or are innexins less 

influenced by interactions with the pore lining helices as shown by DePriest, et al.,(2011).  

Additionally, the “negative path” in the M1 of ShakB L may play a crucial role in rectification 

by acting in the voltage sensor apparatus.  Perhaps altering this “negative” path can further 

clarify the mechanism of rectification.  These are just a few of the potential directions this 

research could continue on in as the role of the innexin N-terminus is brought into focus.   

 

.  
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