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Abstract of a Thesis 

 

Immunological Strategies to Study GRP170 in Caenorhabditis elegans 

 

Characterization of the ER protein folding chaperone GRP170 of Caenorhabditis elegans 

could be greatly facilitated by an antibody which recognized the chaperone. Antibodies have not 

been raised against nematode GRP170. Groups have prepared polyclonal antibodies against 

vertebrate forms of GRP170.  My thesis goal was to investigate whether anti-vertebrate GRP170 

antibodies can recognize the nematode homologue on a standard Western Blot assay. Sequences 

of antigens that groups used to generate anti-vertebrate GRP170 antibodies were analyzed. 

Peptides used by Ruan et al. (2013), which correspond to regions of human GRP170, shared 

greatest sequence similarity with nematode GRP170. I investigated whether the Ruan GRP170 

antibody recognized nematode protein on Western Blots.  I extracted mouse liver proteins and 

whole worm proteins from C. elegans, separated proteins by SDS-PAGE, transferred proteins to 

a PVDF membrane, and probed membranes with the Ruan anti-human GRP170 antibody.  

Although this antibody did recognize a high molecular weight mouse protein, it did not bind to 

an equivalent high molecular weight C. elegans protein. This antibody would have limited utility 

for studies of nematode GRP170.  Isoform-specific antibodies generated against C. elegans 

GRP170 proteins would be valuable tools to differentiate the functions of the two GRP170 

isoforms. I analyzed amino acid sequences of the two GRP170 isoforms of C. elegans.  I 

identified two peptides in a highly-diverged region of C. elegans GRP170, possible isoform 

specific antigens. Antibodies raised against these peptides could show isoform specific 

recognition and be useful for characterizing the two-gene, two-protein GRP170 system in C. 

elegans. 



 iii 

Immunological Strategies to Study GRP170 in Caenorhabditis elegans 

 

 

by 

 

 

Raven Baxter-Christian 

 

 

A Thesis 

in 

Biology 

 

 

Master of Arts 

 

 

August 2017 

 

 

State University of New York 

College at Buffalo 

Department of Biology 

 

Approved by: 

Gregory J. Wadsworth, Ph.D. 

Associate Professor in Biology 

Thesis Adviser 

 

 

Martha Skerrett, Ph.D. 

Chair and Associate Professor in Biology 

 

 

Kevin J. Miller, Ed.D. 

Interim Dean of the Graduate School 

  



 iv 

THESIS COMMITTEE 

 

 

 

Gregory J. Wadsworth, Ph.D. 

Associate Professor in Biology 

 

Derek L. Beahm, Ph.D. 

Assistant Professor in Biology 
 

Daniel L. Potts, Ph.D. 

Associate Professor in Biology 

 

  



 v 

ACKNOWLEDGEMENTS 

 

I give thanks to Dr. Gregory Wadsworth, my advisor, for his invaluable leadership, 

patience, and support throughout my academic career at Buffalo State College. Dr. Wadsworth’s 

part in my academic career is deeply appreciated. I thank Dr. Daniel Potts and Dr. Derek Beahm 

for serving on my thesis committee. I thank Dr. Potts for his insightful views of evolution from 

an ecologist’s perspective. I also thank Dr. Beahm for lending his expertise in cell and molecular 

biology, and making helpful suggestions as I pursued my thesis questions. 

 

I acknowledge the key contributions that Yuanyuan Li and Antonio Rockwell made to 

my thesis work. Their data provided the stepping stones for me to conduct my study. Without 

their data, there would have been much more to be understood about the GRP170 proteins in C. 

elegans. 

 

I thank the Buffalo State faculty and my cohorts for their time and support. The Buffalo 

State Biology Department has provided an outstanding environment for me to achieve my goals. 

I am grateful for my education and experiences and as a student at Buffalo State College. 

 



 vi 

TABLE OF CONTENTS 

 

Introduction          p. 1-5 

Materials and Methods        p. 6-11 

Results           p. 12-17 

Discussion          p. 18-22 

Figures and Tables         p. 23-33  

Works Cited          p. 34-37 

 

  



 vii 

LIST OF TABLES 

 

Table 1. Sequence Conservation within Individual Subdomains of Mouse and C. elegans 

GRP170a and GRP170b.        p. 23 

 

Table 2. Comparison of amino acid sequence conservation between mouse and C. elegans Actin 

and GRP170.         p. 24 

 

Table 3. Comparison of amino acid sequence conservation between antibody immunogen 

sequences and whole C. elegans GRP170 proteins.  .   

           p. 25 

 

Table 4. Comparison of amino acid sequence conservation between selected peptides and whole 

C. elegans GRP170 proteins.        

           p.26 



 viii 

LIST OF FIGURES 

 

Figure 1. Anti-vertebrate Actin Antibody Cross Reacts with C. elegans Actin.  p. 27 

 

Figure 2. Alignment of the peptide sequence used to make the Ruan anti-vertebrate GRP170 

antibody with the sequence of GRP170a.      p. 28 

 

Figure 3. Alignment of the peptide sequence used to make the Ruan anti-vertebrate GRP170 

antibody with the sequence of GRP170b.      p. 29 

 

Figure 4. Anti-vertebrate GRP170 detects proteins in C. elegans and beef extract on a Western 

Blot.          p. 30 

 

Figure 5. Anti-vertebrate GRP170 antibody fails to detect C. elegans GRP170 on a Western Blot.  

           p. 31 

 

Figure 6. Distribution of Hydrophilic Amino Acids within C. elegans GRP170 isoforms. p. 32 

  



 1 

Introduction 

Glucose-regulated protein 170 (GRP170) is a molecular chaperone found in the lumen of 

the endoplasmic reticulum (ER) of all eukaryotes. GRP170 appears to facilitate protein folding in 

the ER using two distinct mechanisms (recently reviewed in Behnke et al., 2015). GRP170 can 

act as a co-chaperone for the ER HSP70 chaperone homologue, BiP, also known as GRP78, by 

functioning as a nucleotide exchange factor (Andréasson et al., 2010). The nucleotide exchange 

factor activity of GRP170 removes ADP from BiP and replaces it with ATP. This cycling of 

adenosine nucleotides is central to BiP’s chaperone activity (reviewed in Behnke et al., 2015).  

Additionally, GRP170 appears to function directly as a chaperone by binding to unfolded 

proteins in the ER (Behnke and Hendershot, 2013). GRP170 binds unfolded protein using its C-

terminal domain in a mechanism like other members of the HSP70 superfamily. 

 

GRP170 is a member of the HSP70 superfamily, a major class of molecular chaperones 

(Easton et al., 2000). Members of this superfamily have conserved structural domains: an N-

terminal ATP binding domain and C-terminal substrate binding domain (SBD) (Bukau and 

Horwich 1998). The SBD has three conserved subdomains: a beta sandwich domain, an alpha 

helical domain and a short loop connecting the beta sandwich and alpha helical domains. 

Members of the HSP70 superfamily bind to hydrophobic residues of unfolded proteins via the 

SBD and prevent formation of protein aggregates within the cell (Tyson et. al., 1997). Disruption 

of GRP170’s C-terminal domain does not interfere with its NEF activity but does prevent it from 

binding unfolded proteins (Park et al., 2003). GRP170 is considerably larger than other members 

of the HSP70 superfamily.  Much of its extra size is due to a larger loop between the ATPase and 

SBD domains and an expanded alpha helical domain (Easton et al., 2000). The canonical 



 2 

member of this superfamily, HSP70 and its ER paralogue BiP have been extensively 

characterized at the biochemical and genetic level (reviewed by Shaner and Morano 2007). 

However, studies of the GRP170 members of this superfamily have only recently begun to 

provide insight into their cellular roles in the ER (Behnke et al., 2015). 

 

As a component of the ER chaperone network, GRP170 assists in protein folding, 

assembly, and transportation of secretory or transmembrane proteins (Wang et al. 2014). The 

physiological and pathological stress conditions that disturb the highly oxidizing and calcium-

rich ER environment can trigger unfolded protein response (UPR) (Li et al. 2011). The UPR is a 

protein quality control mechanism that aims to limit ER stress and restore ER homeostasis, in 

part, by inducing the expression of ER chaperones and by targeting misfolded proteins to the ER-

associated degradation (ERAD) pathway for degradation (Rutkowski et al. 2004). GRP170 is one 

of the chaperones induced by the UPR, however the exact role of GRP170 in the UPR is not 

currently known. 

 

The roundworm C. elegans has been a model system for studying the protein folding 

machinery of the ER (Brignull et al., 2007) and may be especially well suited for investigating 

the role of GRP170. The nematode suborder Rhabditina (Clade V) which includes both non-

parasitic and parasitic nematodes is unique among animal taxa by having not one but two loci 

encoding distinct isoforms of GRP170 (Harris et al. 2009). The two loci in C. elegans, T24H7.2 

and T14G8.3, are also known as grp170a and grp170b respectively. Nei and Nikolaidis (2003) 

proposed that these two loci were generated by a gene duplication prior to the divergence of C. 

elegans and C. briggsae about 100 million years ago (Stein et al. 2003) The discovery that the 
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two loci structure is found in other Rhabditina suggest the divergence may predate even that 

(Harris et al. 2009). 

 

The grp170a gene T24H7.2 is located on chromosome 2 and is part of an operon that 

encodes three other proteins and one snoRNA in addition to grp170a. The grp170b gene, 

T14G8.3, is encoded by a monocistronic operon located on the X chromosome (Harris et al. 

2009). The GRP170A protein has a predicted mass of 104.2 kDa and is 925 amino acids long. 

Presumably the 170 kDa mass estimated from SDS-gel electrophoresis is due to the addition of 

glycosylation in the ER (Ikeda et al. 1997). The grp170b gene generates two protein isoforms, 

likely generated by alternative splicing at the beginning of the gene sequence. The two isoforms 

are nearly identical; isoform A codes for a protein that is 921 amino acids long, and isoform b 

codes for a protein that is 905 amino acids long.  

 

Li (2015) developed isogenic strains of C. elegans lacking either grp170a or grp170b to 

investigate the genetic roles of the two isoforms. Worms that lacked grp170a showed delayed 

development compared to the control strain or worms that lacked grp170b. They took almost 

30% longer, to mature from a hatched egg, develop into adults, and lay their first eggs. In 

contrast, the absence of grp170b was associated with no observable phenotype. Therefore, Li 

concluded that grp170a is more physiologically important in development because its absence 

results in developmental delay. 

 

Rockwell (2015) demonstrated that the two C. elegans grp170 mRNAs are differentially 

regulated during protein folding stress (Rockwell 2015). Worms induced for UPR by the 
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application of the glycosylation blocker tunicamycin showed strong induction of grp170b 

mRNA as measured by RT-qPCR. On the other hand, expression of grp170a mRNA was not 

induced during the unfolded protein response (Rockwell 2015). 

 

 It is not known if the regulation of grp170 at the mRNA level corresponds with the 

regulation at the protein level. It is commonly assumed that mRNA and protein levels correlate. 

However, the observed abundance of mRNA due to strong gene expression does not necessarily 

mean that the corresponding protein is also abundant or even active in the cell (Chen et al., 

2002).  Chaperone genes are often regulated at the translational level, controlling levels of 

protein synthesized from its mRNA. Studies in organisms such as E. coli also have shown that 

protein levels and mRNA copy numbers are sometimes uncorrelated at the cellular level 

(Taniguchi et. al., 2010). An antibody which recognizes nematode GRP170 could be used to 

determine if the expression of the protein GRP170 correlates with its mRNA expression levels. 

 

The primary goal of my thesis was to investigate whether antibodies raised against 

mammalian GRP170, also known as HYOU1 or ORP150, could be used in protein studies of C. 

elegans GRP170. Although there are several antibodies raised against vertebrate GRP170 

epitopes, none of these antibodies have been evaluated for the recognition of the nematode 

homologue of GRP170.  

 

The current grp170 mRNA expression data does not provide insight into protein level 

functions such as post-translational modification or localization of corresponding proteins. 

GRP170 may be active in all parts of the worm or limited to a specific system, such as the 
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nervous or muscular system. An antibody against GRP170 can be used to localize GRP170 

within the tissues of the worm using immunocytochemistry techniques. Antibodies can also be 

used to study protein interactions using co-immunoprecipitation and other approaches. 

Antibodies have been used to demonstrate that vertebrate GRP170 binds BiP as well as some 

unfolded proteins (Behnke and Hendershot 2013). It is not known if the two isoforms of C. 

elegans GRP170 interact differentially with other cellular proteins. It is possible that the two C. 

elegans isoforms have differentiated protein interactions where GRP170A may bind with BiP, 

and GRP170B may bind only unfolded proteins. It is also possible the two isoforms have 

different binding affinities for different proteins. Coimmunoprecipitation studies could be used to 

study the protein-protein interactions of the nematode GRP170s. 

 

Antibody based protein-level studies like those briefly described above will be crucial for 

understanding the roles of the GRP170 two-gene, two-protein system in C. elegans. The goal of 

my thesis was to investigate whether anti-vertebrate GRP170 antibody can recognize and bind 

the nematode homologue on a standard western-immunoblot assay. In addition, I used 

bioinformatics to identify possible antigenic regions on the C. elegans GRP170 proteins to 

generate isoform specific antibodies in the future. 
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Materials and Methods 

Worm Cultures 

The standard laboratory strain of C. elegans, N2 was cultured on nematode growth media 

(NGM) (0.25% w/v tryptone, 0.3% w/v NaCl, 1.8% w/v agar, 1 mM CaCl2, 1 mM MgSO4, 5 

µg/ml cholesterol in ethanol, 25 mM KPO4, pH 6) seeded with OP50 strain of E. coli as a food 

source (Brenner 1974). Nematode cultures were grown and maintained at 20°. New cultures 

were established by the chunking method wherein a sterilized spatula is used to remove a chunk 

of agar from an established plate worm culture and the chunk is placed on a fresh NGM plate 

seeded with OP50 E. coli.   The worms crawl out of the chunk and spread out onto the bacterial 

lawn of the new plate to establish a new culture (Stiernagle 1999). 

 

Preparing Protein Extracts for SDS-PAGE 

Mouse liver, used as a source of vertebrate protein, was a gift from Roswell Park Cancer 

Institute. It was harvested from adult mice and frozen at -80°C before being transported to 

Buffalo State College. A sample of 3.2g of liver tissue was physically ground to a liquid state in 

15ml of deionized water using a mortar and pestle. The sample was centrifuged to eliminate 

solids, and the liquid supernatant was kept for protein determination. Caenorhabditis elegans N2 

worms were harvested by washing the mixed larval and adult population from NGM plates with 

5mL M9 buffer (42mM Na2HPO4, 22mM KH2PO4, 86mM NaCl, and 1mM MgSO4) and 

collecting into a pre-weighed conical tube. The collected worms were pelleted by centrifugation 

at 2,500g and wet pellet weight mass was obtained by removing liquid from the pellet and 

measuring mass of pellet in pre-weighed conical tube. Worms were lysed in household bleach, 

releasing protein contents. Protein concentration of mouse liver and C. elegans extract was 
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obtained using the Bradford assay (Bradford 1976). Proteins were diluted to a final concentration 

of 2 mg/ml in SDS loading buffer (5% β-mercaptoethanol, 0.02% bromophenol blue, 30% 

glycerol, 10% sodium dodecyl sulfate, 250 mM tris-Cl, pH 6.8). Protein extracts were boiled for 

10 minutes in SDS loading buffer. 

 

SDS Electrophoresis 

Denatured protein (10-20 g/well) was loaded into sample wells of Mini-PROTEAN® 

TGX™ Precast Gradient Gels 4-12% (Bio-Rad, Hercules, CA) and run at 200V for 20 minutes. 

Precision Plus Protein™ Dual Color protein standards were used to estimate molecular weight on 

SDS-PAGE and Western Blots (Bio-Rad, Hercules, CA). 

 

Antibody Selection 

Three commercial sources of antibodies against GRP170 were identified from suppliers 

Abnova, Abbexa, and Bioss. All three were raised using synthetic peptides corresponding to 

different regions of human GRP170. The sequences of peptides used to raise the anti-GRP170 

antibodies sold by Abnova was not provided, so this antibody was not used. The polyclonal 

rabbit antibody sold by Abbexa was raised against the amino acids #274-303 of human GRP170 

(EMELRLRERLAGLFNEQRKGQRAKDVRENP), and the polyclonal rabbit antibody sold by 

Bioss was raised against AA# 400-450 of human GRP170 

(VGKEELGKNINADEAAAMGAVYQAAALSKAFKVKPFVVRDAVVYPILVEFT). 

 

To identify which anti-vertebrate GRP170 antibody had the greatest likelihood of cross-

reacting with C. elegans GRP170, I determined which of the peptide antigens shared the greatest 
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sequence identity with the nematode GRP170 sequences. The peptide sequences were aligned to 

each C. elegans GRP170 using Clustal Omega (Lopez et. al 2014) (Nucleic Acids Research 

2014). The Gap Penalty in the alignment algorithm was set to a high level (10.0) to minimize 

gaps. 

 

 

Western Blot Analysis 

After protein separation via SDS-PAGE, proteins were transferred to a PVDF membrane 

using the Trans-Blot® Turbo™ Transfer System (Bio-Rad, Hercules, CA) on the high molecular 

weight setting when preparing membranes for anti-GRP170 blotting, and the low molecular 

weight setting when preparing membranes for anti-actin blotting. To ensure that the proteins 

were evenly transferred from the gel to the PVDF membrane, post-transfer gels were stained 

using Coomassie stain (0.1% (w/v) Coomassie blue R350, 20% (v/v) methanol, and 10% (v/v) 

acetic acid) (data not shown). To block non-specific binding sites, membranes were incubated 

for 1 hour at room temperature in 3% Blotto (Santa Cruz Biotechnology, Santa Cruz, CA) in 

TBST (137mM NaCl, 2.7mM KCl, 19mM Tris base). After blocking, the membranes were 

incubated with their primary antibody for one hour at room temperature in 3% Blotto in TBST. 

Actin antibody was diluted 1:500 and used as a positive control (catalog #sc-1616-R, Santa Cruz 

Biotechnology, Santa Cruz, CA). Anti-ORP150 was diluted 1:500 and used as experimental 

antibody (Catalog number bs-4248R, Bioss Anitbody Inc, Worburn, MA) (Ruan et al. 2013). 

After incubation with the primary antibody, the membrane was washed for five minutes at a time 

with TBST, for five times. After washing, the membrane was incubated with the secondary 

antibody, goat anti-rabbit antibody conjugated to horseradish peroxidase (Thermo Fisher 
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Scientific, Grand Island, NY), which was diluted 1:1000, at room temperature for one hour. 

After incubation with the secondary antibody, the membrane was washed as previously 

described.  

 

Image Analysis 

After washing, the membrane was incubated with chemiluminescent substrate using the 

Pierce™ ECL Western Blotting Substrate Kit as per manufacturer’s instructions (Thermo Fisher 

Scientific, Grand Island, NY). Imaging was done using the ChemiDoc™ MP System using the 

immunoblot program settings (Bio-Rad). 

The prestained Precision Plus Protein™ Dual Color protein standards were visible on the 

blot after transfer.  The blots with proteins standards were photographed under white light. 

Images of standards and chemiluminescent immune-detected proteins were compared to estimate 

molecular weight of immune-detected on Western Blots. 

 

Computer-aided Sequence Analysis of GRP170 Proteins 

Protein sequences of vertebrate and Caenorhabditis elegans GRP170 proteins were 

obtained from Uniprot, a database of protein sequence and functional information (UniProt 

Consortium 2017).  Accession numbers corresponding to analyzed sequences were #Q9Y4L1 

(Human GRP170), #Q9JKR6 (Mouse GRP170), and #Q22758 (C. elegans GRP170a) and 

#Q5WRQ0 (C. elegans GRP170b).   

 

The boundaries for the four major structural subdomains of mouse GRP170 have been 

analyzed (Easton et al. 2000). The signal peptide corresponds to amino acid #1-3, the ATP 
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binding domain corresponds to amino acid #33-430, the beta sheet domain corresponds to amino 

acid #431-600, the alpha helical domain corresponds to amino acid #601-715. To determine the 

location of subdomains in the GRP170 proteins of other species, the amino acid sequences of 

the homologues (Mouse, Human, C. elegans GRP170a and C. elegans GRP170b) were aligned 

using the Clustal Omega multiple sequence alignment program (Lopez et. al 2014).  The 

identities of boundary amino acids for the subdomains of each GRP170 homologue were 

predicted based simply on what amino acid of each homologue aligned to the boundary amino 

acid of the mouse protein.  For example, the N-terminal boundary of C. elegans GRP170 ATP 

binding domain corresponds to the leucine at amino acid #32 in mouse GRP170.  In the Clustal 

Omega alignment, the phenylalanine at amino acid #419 of C. elegans GRP170a aligned with 

the mouse leucine at #430. The subdomain boundaries of the GRP170A protein was predicted to 

be: AA#1-23 signal peptide, 24-419 ATP binding domain, 420-581 beta sheet domain, 582-672 

acidic loop, 673-925 alpha helical domain. The subdomain boundaries of the GRP170B protein 

was predicted to be: AA# 1-26 signal peptide, 27-421 ATP binding domain, 422-562 beta sheet 

domain, 563-645 acidic loop, 646-921 alpha helical domain.  

 

To identify which subdomains within the C. elegans GRP170’s had the greatest level of 

sequence divergence, the sequences of the subdomains of the two C. elegans GRP170’s and the 

human GRP170 were aligned against in pairwise alignments using the Clustal Omega multiple 

sequence alignment program. Clustal Omega uses a substitution matrix that generates scoring 

matrices that are designed to identify distant evolutionary relationships by generating values 

such as sequence identity and similarity (Pearson 2014). The program calculates “sequence 

identity” as the percentage of identical amino acids conserved between aligned sequences. The 
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Amsterdam University Profile Alignment (PRALINE) multiple sequence alignment application 

alignment program was I used to evaluate residue hydrophobicity (Simossis and Heringa 2016).  
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Results 

Immunological Analysis 

The initial goal of my thesis project was to determine if antibodies raised against 

vertebrate GRP170 could cross-react with GRP170 from Caenorhabditis elegans. I used the 

Western Blot assay which is routinely used to evaluate antibody specificity and can be used to 

determine cross species reactivity (Michaud et al. 2003).  If an antibody cross reacts with a 

homologous protein of another taxa, then when tested against total cellular proteins from that 

taxa, it should generate a single band on the Western Blot corresponding to the size of the target 

protein.  Failure to generate a positive signal would indicate the antibody did not cross react with 

the homologous protein.  

 

As a positive control for my Western Blot protocol, I used a rabbit antibody raised 

against the C terminus of human actin (Santa Cruz Biotechnology 2017).  The antibody against 

human actin had previously been reported to cross-react with its nematode protein homologue. 

The molecular weight of actin in both mouse and C. elegans is 42 kDa (Whalen at. al 1976) 

 

 The actin antibody bound to two bands of peptides in my mouse extracts (Figure 1).  

Using whole worm protein extracts in a Western Blot, the anti-vertebrate actin antibody 

recognized a single 40 kDa protein in C. elegans (Figure 1). This was consistent with the 

manufacturer’s report that this antibody cross reacted with C. elegans actin (Budde and Roth 

2009). I believe the smaller band recoginized in the mouse extract was proteolytic degradation 

products of the mouse actin – possibly associated with the freezing and thawing of tissue 

associated with transport extracting of the liver protein. The mouse liver had to be frozen for 
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transport to Buffalo State. Freezing and thawing may have damaged the liver cells resulting in 

proteolytic degradation. Additionally, the mouse tissue was ground in pure water with no attempt 

to inactivate proteases until the sample was boiled in SDS-PAGE loading buffer. In hindsight, a 

protease inhibitor may have solved this issue; however, it was not used in the experiment. The 

worms, however, were harvested alive and directly from their culture plates and boiled in SDS-

PAGE loading buffer. The lack of detection of smaller proteolytic fragments in C. elegans 

demonstrated that direct extraction of nematode proteins by boiling live worms directly in SDS 

sample buffer limited proteolysis. This positive control demonstrated that my protein extraction 

technique, electrophoresis, blotting, and immunodetection strategy could detect cross-phylum 

recognition of a C. elegans protein by an antibody raised against the vertebrate homologue. 

 

There were several commercially available sources of rabbit anti-GRP170 antibodies. 

Each of these antibodies was generated in research laboratories and then licensed to commercial 

antibody suppliers to make them available to the scientific community. These GRP170 

antibodies were all raised using synthetic polypeptides corresponding to subdomains of human 

GRP170 protein.  

 

An anti-GRP170 antibody raised against a peptide that shares the greatest similarity to C. 

elegans GRP170 would be the most likely to cross-react with the C. elegans proteins. I analyzed 

the peptides used to raise these antibodies to determine which shared the greatest similarity with 

nematode GRP170’s. The peptide with the greatest similarity to nematode GRP170 corresponded 

to the rabbit antibody Anti-ORP150 was the antibody used in the Ruan (2013) study (Catalog 

number bs-4248R, Bioss Antibody Inc, Worburn, MA). The antibody is generated against a KLH 
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conjugated synthetic peptide derived from human ORP150. The immunogen range is against 

amino acids 400-450 of the HYOU1 sequence (Figure 2-3) . This immunogen shares 3.0% and 

2.9% sequence identity with the C. elegans GRP170A and GRP170B proteins respectively. 

There are several contiguously conserved amino acids in the alignments. GRP170A and the Ruan 

(2013) antibody share seven identical amino acids between numbers 401 and 409 in the sequence 

alignment (Figure 2). The GRP170B protein shares 13 identical amino acids between numbers 

404-419 in the sequence alignment (Figure 3). The Abbexa antibody immunogen only shares 

0.9% and 1.1% sequence identity with the C. elegans GRP170A and GRP170B proteins, 

respectively. 

 

  The Ruan (2013) antibody has been demonstrated to cross-react with human, mouse, and 

rat HYOU1. This antibody was used in a Western Blot experiment to determine the sensitivity of 

the antibody to mouse and C. elegans. To test whether the Ruan antibody raised against mouse 

GRP170 would cross react with C. elegans GRP170 I used the Western Blot analysis to test its 

specificity. My initial experiments yielded unexpected results. Prior to acquiring the donated 

mouse liver tissue, the experiment was ran using ground beef extract. The antibody appeared to 

bind to a high molecular weight protein in beef extract and nematode extracts however major 

bands of the western blot were the detection of proteins of about 70 kDa. (Figure 4). On internet 

forum postings, researchers have reported other antibodies cross reacting with a smaller than 

expected protein (Drupaz 2016).  The speculation was that the recognition of a 70 kDa protein 

might be a cross-reaction with HSP70 proteins or some other 70 kDa protein such as an albumin.   
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A technical solution suggested on the Research Gate forum to detect larger molecular 

weight proteins such as the GRP170 protein was to probe just the region of the blot 

corresponding to proteins greater than 70 kDa (Drupaz 2016).  This was achieved by physically 

cutting off the region of the PVDF membrane corresponding to the lower molecular weight 

protein and just probing the region of the blot corresponding to higher molecular weight proteins 

with the antibody (Figure 5).   The signal on the blot was faint but the antibody clearly 

recognized a mouse protein in in the 170 kDa range. This band is presumptively the mouse 

GRP170.  However, the antibody did not react with similar sized proteins in the nematode 

extracts. This suggests that the antibody against vertebrate GRP170 did not cross react with 

nematode GRP170.  However, there may be alternative explanations for the lack recognition of a 

high molecular weight protein in C. elegans.  It is possible that there was some level of cross 

reaction but it that it was too low to be detected by standard Western Blot procedures. I cannot 

rule out the possibility that there is simply much less GRP170 in nematodes and there was just 

too little to detect by Western Blotting.   

 

Analysis of Potential GRP170a and GRP170b Antigens 

Based on my Western Blot results it seems unlikely that antibody raised against 

vertebrate GRP170 will be useful for studying the nematode protein.  Therefore, immunological 

analysis of nematode GRP170 may require producing antibodies directly against the nematode 

protein.  In principle, the same strategy used to generate the vertebrate GRP170 antibody 

(Hancock and O'Reilly 2005) could be used to generate a nematode GRP170 antibody.  Oligo-

peptides corresponding to regions of the nematode GRP170 could be synthesized, cross linked 

and then used as an antigen for production of polyclonal antibodies in rabbits.  One advantage of 
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generating antibodies directly against nematode GRP170 peptides is that it should be possible to 

generate isoform-specific antibodies.  An isoform-specific antibody would only bind to epitopes 

of one isoform (GRP170a or GRP170b) but not the other isoform.  Because isoform specific 

antibodies could distinguish between the two GRP170’s, they would be powerful tools to 

characterize and differentiate the functions of the two isoforms. The two C. elegans isoforms 

have diverged almost as much from each other, 37% sequence identity, as the nematodes 

GRP170’s have diverged from the vertebrate protein, 33% sequence identity (Table 6).  With this 

degree of sequence divergence, it should be possible to identify peptides within of the nematode 

proteins that will provide isoform specific epitopes for antibody generation/recognition.   

 

Sequence Analysis 

I analyzed the sequences of the two C. elegans GRP170 isoforms to identify peptide 

regions within the proteins with high levels of sequence divergence. My strategy was initially to 

analyze the individual functional domains within the larger protein.  The rational is that the 

specific function of each domain would differentially constrain sequence divergence.  This had 

been already documented for the subdomains of the HSP70 chaperone superfamily and GRP170 

(Easton et al. 2000).  The major subdomains of GRP170 include the signal peptide, alpha helical 

domain, ATP binding domain, beta basket, and the acidic loop domain. The signal peptide was 

not included in this analysis because it is cleaved from the protein after import into the ER and is 

not part of the mature GRP170.  Bracher and Verghese (2015) had previously determined the 

boundaries of each functional domain within the mouse protein.  These subdomain boundaries 

within the mouse protein were used to identify boundaries in the C. elegans GRP170’s.  Each of 

the four subdomains of the C. elegans GRP170 isoforms were individually aligned and the 
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percent sequence identity was determined (Table 2) (Lopez et. al 2013). Percent sequence 

identity represents the percent of identical amino acids shared between two aligned sequences. 

Of the four functional domains of the nematode proteins, the ATP binding domain was the most 

conserved with 54% sequence identity and the loop domain was the least conserved with only 

22% sequence identity.  These data suggest that the loop domain might provide the most likely 

peptide sequence for isoform specific antigens, however the two proteins are very diverged from 

one another and an isoform specific antigen may very well be found in another domain of the 

protein.  Upon further investigation, sequence alignment indicated there were unique insertions 

in the beta sheet domain that could serve as epitopes for isoform-specific antibody recognition. 

These are the peptide regions that I recommend as antigens for isoform-specific antibodies. 

 

Hydrophilic peptides are much more antigenic than hydrophobic ones (Hopp and Woods, 

1981). Fortunately, the beta sheet domain was rich in hydrophobic amino acids (Figure 6).  

Additionally, insertion/deletion regions represent especially good targets isoform specific 

epitopes (Scherer et al. 1995). I identified corresponding peptides from the C. elegans beta sheet 

domains that were composed of mostly hydrophilic amino acids. For GRP170A, the region 

corresponded to AA 498-528 (SVALKYGKIESFTKQQVQEIG. This peptide shares 0.8% 

identity with GRP170B) (Table 3) (Figure 6). For GRP170b the region corresponded to AA 535-

550 (KDAIEKEVTDENSVLKGVKTT) (Table 3) (Figure 6). This peptide shares 0.9% identity 

with GRP170A (Table 3.) 
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Discussion 

 

Using a standard Western Blot assay I could not detect any cross reaction between an 

anti-vertebrate GRP170 antibody and nematode GRP170.  The simplest explanation for this 

result was that the nematode GRP170s have diverged so significantly that they did not share the 

epitopes that the antibody recognized on the vertebrate protein.  The Ruan (2013) antibody was 

chosen for this analysis because it was generated by a peptide that shared greater sequence 

identity with the nematode GRP170’s compared to peptides used to generate other antibodies 

(Table 3).  The Ruan (2013) antibody shared 3.0% and 2.9% sequence identity with the 

GRP170A and GRP170B proteins, respectively. However, this level of sequence conservation 

may be insufficient to include shared epitopes. Antibodies that were not chosen included 

antibodies that were generated against the N-terminus of the human GRP170 protein, as these 

antibodies shared most of their sequence homology with the worm protein in the leader signal 

sequence, which is cleaved by proteases (Wolfe et al. 1983).  

 

An alternative explanation for my negative results was that there were insufficient levels 

of GRP170 protein in C. elegans to detect by Western Blotting. The signal on the Western Blot 

for the positive control mouse liver GRP170 was very faint.  If the level of GRP170 protein was 

significantly lower in C. elegans, than the worm GRP170 may not be detectable under these 

Western Blot conditions.  There have been no reported attempts to measure levels of GRP170 in 

nematodes, so it is possible that levels of the chaperone are low.  One characteristic of GRP170 

across taxa is that its protein levels are induced by stress associated with the Unfolded Protein 

Response (Lee 2001).  Although GRP170 protein induction has not been assayed in nematodes, 
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at the mRNA level the gene encoding GRP170b is reported to be induced greater than six-fold 

during the UPR (Rockwell 2014). It might be worthwhile to repeat these Western Blot assays 

using protein extracted from worms induced for the UPR to see if induction of GRP170 would 

allow it to be detected by Western Blotting. 

 

A third explanation for my negative results was that the C. elegans GRP170 protein was 

exposed to proteolytic degradation during extraction.  I did not include a mixture of protease 

inhibitors in the extraction solution that some labs include during extraction (Bhaskaran et al. 

2011). If the C. elegans protein had been proteolytically cleaved, it might not have been detected 

on the high molecular weight region of the blot.  There was evidence that the mouse samples had 

suffered some proteolytic degradation.  In the control actin blot, several smaller peptides were 

detected by the anti-actin antibody which were presumably proteolytical fragments.  The 

proteolysis may have occurred during the freeze thawing of the tissue or because of its direct 

extraction into water.  It is noteworthy that no similar proteolysis of C. elegans actin was 

observed.  This is likely because the worms were not frozen prior to extraction nor were they 

extracted into water.  Instead the nematode proteins were extracted directly from live worms into 

100°C denaturing SDS buffer. These harsh conditions would have denatured the proteases before 

they could have cleaved of worm proteins. The single 40kDa band detected by the actin antibody 

on the Western Blot in the worm proteins suggest this extraction technique effectively minimizes 

proteolysis for the worm proteins.  Therefore, I do not believe that lack of detection of GRP170 

in the worm samples was due to proteolysis of the worm GRP170.    
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Proteolysis could be the explanation for the lower molecular weight proteins detected by 

the anti-GRP170 antibody.  However, these lower molecular weight proteins were observed both 

in the mouse and the worm samples.  If the strategy for extracting the worm proteins prevented 

proteolysis, then the bands associated with lower molecular weight bands are more likely to be 

due to cross reaction of the antibodies with other proteins. 

 

An important control in my experimental design was the use of an anti-actin antibody. 

This control was chosen because the antibody raised against human actin had been previously 

reported to cross react with the nematode protein (Budde and Roth 2009). As expected, this 

antibody specifically recognized a single protein of the approximate molecular weight of actin in 

the nematode (43kDa). This result confirms that the standard Western Blot conditions I used 

could detect cross-phylum protein homologues. Taxa cross-reaction of anti-actin antibody is not 

surprising given the high degree of amino acid identity between vertebrate and nematode actin. 

Rabbit and nematode actin have sequence homology of 93.6% sequence identity. With such a 

high sequence homology, it is likely that there would be cross-taxa antibody binding 

 

It appears the anti-vertebrate GRP170 will not be useful to study the two-isoform 

chaperone system in nematodes.  However, given the potential value of immunological assays 

for investigating the roles of these proteins, I propose it is worth producing antibodies directly 

against nematode GRP170.  These antibodies will be of even more valuable if they are specific 

to individual isoforms of GRP170.   Antibodies are generated using antigens that trigger an 

immune response in the source animal. The blood serum is then collected from the animal and 

the antibodies purified (Hanly et. al, 1995). To generate anti C. elegans GRP170 antibodies, 
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source animals could be immunized with the full-length GRP170 as the antigen.  However, 

nematodes are not an ideal system for isolated large quantities of purified protein.  A more cost 

effect route would be to synthesize peptides based on the predicted amino acid sequence of the 

GRP170 isoforms.  Using a synthetic C. elegans GRP170 peptide would be cheaper and require 

less effort to obtain than purifying the native protein. Therefore, this is the approach to GRP170 

antibody generation I would recommend. 

 

When using synthetic peptides to generate antibodies, selecting the sequence of the 

peptide antigen is the most critical step. There are several characteristics of the peptides that 

should be considered to maximize the likelihood of success in producing antibodies (Van 

Regenmortel and Muller 1999). If the protein is going to be studied in its native state, it would be 

wise to choose a peptide sequence that is found on the surface of the native protein. If the protein 

is going to be denatured, one should select a sequence that is found on the linearized protein. 

These sequences should contain both hydrophilic and hydrophobic residues, and preferably have 

antigenic amino acids such as cysteine, leucine, and valine (Van Regenmortel and Muller 1999). 

  

Future Research Prospects 

 GRP170A and GRP170B have diverged so significantly that it should be possible to 

generate isoform specific antibodies. I have identified two potential peptide antigens. The next 

step in studying nematode GRP170 should be to generate isoform specific antibodies. There are 

commercial providers of peptides. The antibodies could be generated at Buffalo State College, or 

by one of several outside vendors specializing in antibody production such as GenScript or 

Pacific Immunology. Upon obtaining antibodies, it should initially be tested to confirm that it 
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recognizes GRP170. More importantly, the antibodies should be tested to see if they recognize 

isoform specific epitopes. Li (2014) mutant strains lacking grp170a or grp170b could be used to 

confirm that the antibodies are isoform specific.  If the antibodies are isoform specific, then the 

antibody raised against GRP170a peptides should not recognize a protein in the strain lacking the 

grp170a and the antibody raised against GRP170b peptides should not recognize a protein in the 

strain lacking the grp170b. 
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Table 1: Sequence Conservation within Subdomains of 

Mouse and C. elegans GRP170a and GRP170b 

GRP170 Subdomains M
o
u
se

 G
R

P
1
7
0
 v

s.
  

C
. 
el

eg
a
n
s 

G
R

P
1
7
0
A

 

M
o
u
se

 G
R

P
1
7
0
 v

s.
  

C
. 
el

eg
a
n
s 

G
R

P
1
7
0
B

 

C
. 
el

eg
a
n
s 

G
R

P
1
7
0
A

 v
s.

  

C
. 
el

eg
a
n
s 

G
R

P
1
7
0
B

 

Signal Peptide 30%1 19% 24% 

NBD 47% 46% 54% 

B-basket 29% 27% 32% 

Acidic Loop 22% 20% 26% 

Alpha Helical 24% 24% 22% 
1 Percent sequence identity. The sequences of individual 

subdomains of Mouse GRP170 and C. elegans GRP170A 

and GRP170b were aligned and percent sequence identities 

were calculated using EMBOSS stretcher (Hancock and 

Bishop 2004). 
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Table 2: Comparison of Amino Acid Sequence 

Conservation between Mouse and C. elegans Actin and 

GRP170. 
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C. elegans Actin 
96%1 - - 

C. elegans GRP170A - 33% - 

C. elegans GRP170B 
- 33% 37% 

1 Percent sequence identity.  Mouse and C. elegans Actin 

and GRP170 sequences were aligned and percent 

sequence identities were calculated using the ClustalW 

algorithm (Lopez et al. 2014). 
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Table 3: Comparison of Amino Acid Sequence 

Conservation between Vertebrate Peptides used to Raise 

GRP170 Antibodies and the C. elegans GRP170 Isoforms.  
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GRP170A 0.9%1 3.0% 

GRP170B 1.1% 2.9% 
1 Percent sequence identity.  C. elegans whole protein 

sequences and antibody peptide sequences were aligned and 

percent sequence identities were calculated using the 

EMBOSS needle algorithm (Hancock and Bishop 2004). 
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Table 4:  Sequence Comparison of Selected Peptides for 

Isoform-Specific Antibody Production for GRP170a and 

GRP170b and the Entire Protein Sequences of C. elegans 

GRP170a and GRP170b.  
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C. elegans GRP170A 2.3%1 0.8% 

C. elegans GRP170B 
0.9% 2.3% 

1 Percent sequence identity.  C. elegans whole protein 

sequences and selected peptide sequences were aligned 

and percent sequence identities were calculated using the 

EMBOSS needle algorithm (Hancock and Bishop 2004). 
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Figure 1: Anti-vertebrate Actin Antibody Cross Reacts with C. elegans Actin. Protein 

extracts of Mouse Liver (Lanes A-D) and mouse liver (Lanes E-F) were analyzed by Western 

Blot analysis.  Two quantities of protein extracts were loaded on the gel, 10 g (lanes A, B, E 

and F) and 20 g (Lanes C, D, G and H). Proteins were separated by SDS electrophoresis and 

transferred to PVDF membranes. Membranes were probed with a rabbit anti-human GRP 

polyclonal antibody followed by a horseradish peroxidase conjugated secondary antibody.  

Position of 40 kDa molecular weight standard is indicated on the left. Antibody binding was 

detected by chemiluminescence. The arrow indicates the binding of the anti-vertebrate actin 

antibody to 40 kDa worm actin.    

  

    A   B  C     D      E     F        G    H 

40 
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Figure 2: Alignment of the peptide sequence used to make the Ruan anti-vertebrate 

GRP170 antibody with the sequence of C. elegans GRP170a.  Sequences were aligned using 

the PRALINE algorithm. Color indicates the chemical similarity of the aligned amino acid 

residues with Red indicating identity and blue indicate chemical dissimilarity.  Consistency 

values 0-9 also indicate degree of chemical similarity with 0 being most dissimilar and 9 being 

most similar.  A region of approximately 15 residues of the Ruan peptide showed a high degree 

of similarity.  
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Figure 3: Alignment of the peptide sequence used to make the Ruan anti-vertebrate 

GRP170 antibody with the sequence of C. elegans GRP170b.  Sequences were aligned using 

the PRALINE algorithm. Color indicates the chemical similarity of the aligned amino acid 

residues with Red indicating identity and blue indicate chemical dissimilarity.  Consistency 

values 0-9 also indicate degree of chemical similarity with 0 being most dissimilar and 9 being 

most similar.  A region of approximately 15 residues of the Ruan peptide showed a high degree 

of similarity.  
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Figure 4: Anti-vertebrate GRP170 detects proteins in C. elegans and beef extract on a 

Western Blot. Protein extracts of beef extract (Lanes A through D) and whole worm protein 

extract (Lanes E through H) 10 g were loaded on the gel, analyzed by Western Blot analysis.  

Proteins were separated by SDS electrophoresis and transferred to PVDF membranes.  Position 

of molecular weight standards (kDa) is indicated on the left.  Membranes were probed with a 

rabbit anti-human GRP polyclonal antibody followed by a horseradish peroxidase conjugated 

secondary antibody.  Antibody binding was detected by chemiluminescence.   The arrow 

indicates the binding of the anti-human GRP170 antibody to a high molecular weight protein in 

the whole worm protein extracts. 
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Figure 5: Anti-vertebrate GRP170 antibody fails to detect C. elegans GRP170 on a Western 

Blot. Protein extracts of whole worms (Lanes A and C) and mouse liver (Lanes B and D) 10 g 

were loaded on the gel, analyzed by Western Blot analysis.  Proteins were separated by SDS 

electrophoresis and transferred to PVDF membranes.  Position of molecular weight standards 

(kDa) is indicated on the left.  Membranes were probed with a rabbit anti-human GRP polyclonal 

antibody followed by a horseradish peroxidase conjugated secondary antibody.  Antibody 

binding was detected by chemiluminescence.   The arrow indicates the binding of the anti-human 

GRP170 antibody to a high molecular weight protein in the mouse liver extracts. Binding of anti-

human GRP170 antibody to a large molecular weight protein in whole worm extracts was not 

detected.  
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Hydrophilic                       Hydrophobic 

 

 

Figure 6: Distribution of Hydrophilic Amino Acids within C. elegans GRP170 isoforms.  

The C. elegans genes GRP170a (T24H7) and GRP170b were alignment using the PRALINE 

algorithm and the relative hydrophobicity of amino acids indicated by color with light blue being 

the most hydrophilic and red being the most hydrophobic. The key to color coding of amino 

acids is included. 
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